https://www.binarytides.com/socket-programming-c-linux-tutorial/
Socket programming in C on Linux – The Ultimate Guide for Beginners
By Silver Moon | May 17, 2020
154 Comments
· Facebook
· Twitter
· Pinterest
· LinkedIn
TCP/IP socket programming in C
This is a quick tutorial on socket programming in c language on a Linux system. "Linux" because the code snippets shown over here will work only on a Linux system and not on Windows. The windows api to socket programming is called winsock and we shall go through it in another tutorial.
Sockets are the "virtual" endpoints of any kind of network communications done between 2 hosts over in a network. For example when you type www.google.com in your web browser, it opens a socket and connects to google.com to fetch the page and show it to you. Same with any chat client like gtalk or skype. Any network communication goes through a socket.
The socket api on linux is similar to bsd/unix sockets from which it has evolved. Although over time the api has become slightly different at few places. And now the newer official standard is posix sockets api which is same as bsd sockets.
This tutorial assumes that you have basic knowledge of C and pointers. You will need to have gcc compiler installed on your Linux system. An IDE along with gcc would be great. I would recommend geany as you can quickly edit and run single file programs in it without much configurations. On ubuntu you can do a sudo apt-get install geany on the terminal.
All along the tutorial there are code snippets to demonstrate some concepts. You can run those code snippets in geany rightaway and test the results to better understand the concepts.
1. Create a socket
This first thing to do is create a socket. The socket function does this.
Here is a code sample :
#include<stdio.h>
#include<sys/socket.h>

int main(int argc , char *argv[])d
{
	int socket_desc;
	socket_desc = socket(AF_INET , SOCK_STREAM , 0);
	
	if (socket_desc == -1)
	{
		printf("Could not create socket");
	}
	
	return 0;
}
Function socket() creates a socket and returns a descriptor which can be used in other functions. The above code will create a socket with following properties
Address Family - AF_INET (this is IP version 4) Type - SOCK_STREAM (this means connection oriented TCP protocol) Protocol - 0 [or IPPROTO_IP This is IP protocol]
Next we shall try to connect to some server using this socket.
We can connect to www.google.com
Note
Apart from SOCK_STREAM type of sockets there is another type called SOCK_DGRAM which indicates the UDP protocol. This type of socket is non-connection socket. In this tutorial we shall stick to SOCK_STREAM or TCP sockets.
2. Connect socket to a server
We connect to a remote server on a certain port number. So we need 2 things, ip address and port number to connect to.
To connect to a remote server we need to do a couple of things. First is to create a sockaddr_in structure with proper values.
struct sockaddr_in server;
Have a look at the structure
// IPv4 AF_INET sockets:
struct sockaddr_in {
 short sin_family; // e.g. AF_INET, AF_INET6
 unsigned short sin_port; // e.g. htons(3490)
 struct in_addr sin_addr; // see struct in_addr, below
 char sin_zero[8]; // zero this if you want to
};

struct in_addr {
 unsigned long s_addr; // load with inet_pton()
};

struct sockaddr {
 unsigned short sa_family; // address family, AF_xxx
 char sa_data[14]; // 14 bytes of protocol address
};
The sockaddr_in has a member called sin_addr of type in_addr which has a s_addr which is nothing but a long. It contains the IP address in long format.
Function inet_addr is a very handy function to convert an IP address to a long format. This is how you do it :
server.sin_addr.s_addr = inet_addr("74.125.235.20");
So you need to know the IP address of the remote server you are connecting to. Here we used the ip address of google.com as a sample. A little later on we shall see how to find out the ip address of a given domain name.
The last thing needed is the connect function. It needs a socket and a sockaddr structure to connect to. Here is a code sample.
#include<stdio.h>
#include<sys/socket.h>
#include<arpa/inet.h>	//inet_addr

int main(int argc , char *argv[])
{
	int socket_desc;
	struct sockaddr_in server;
	
	//Create socket
	socket_desc = socket(AF_INET , SOCK_STREAM , 0);
	if (socket_desc == -1)
	{
		printf("Could not create socket");
	}
		
	server.sin_addr.s_addr = inet_addr("74.125.235.20");
	server.sin_family = AF_INET;
	server.sin_port = htons(80);

	//Connect to remote server
	if (connect(socket_desc , (struct sockaddr *)&server , sizeof(server)) < 0)
	{
		puts("connect error");
		return 1;
	}
	
	puts("Connected");
	return 0;
}
It cannot be any simpler. It creates a socket and then connects. If you run the program it should show Connected.
Try connecting to a port different from port 80 and you should not be able to connect which indicates that the port is not open for connection.
OK , so we are now connected. Lets do the next thing , sending some data to the remote server.
Connections are present only in tcp sockets
The concept of "connections" apply to SOCK_STREAM/TCP type of sockets. Connection means a reliable "stream" of data such that there can be multiple such streams each having communication of its own. Think of this as a pipe which is not interfered by other data.
Other sockets like UDP , ICMP , ARP dont have a concept of "connection". These are non-connection based communication. Which means you keep sending or receiving packets from anybody and everybody.
3. Send data over socket
Function send will simply send data. It needs the socket descriptor , the data to send and its size.
Here is a very simple example of sending some data to google.com ip :
#include<stdio.h>
#include<string.h>	//strlen
#include<sys/socket.h>
#include<arpa/inet.h>	//inet_addr

int main(int argc , char *argv[])
{
	int socket_desc;
	struct sockaddr_in server;
	char *message;
	
	//Create socket
	socket_desc = socket(AF_INET , SOCK_STREAM , 0);
	if (socket_desc == -1)
	{
		printf("Could not create socket");
	}
		
	server.sin_addr.s_addr = inet_addr("74.125.235.20");
	server.sin_family = AF_INET;
	server.sin_port = htons(80);

	//Connect to remote server
	if (connect(socket_desc , (struct sockaddr *)&server , sizeof(server)) < 0)
	{
		puts("connect error");
		return 1;
	}
	
	puts("Connected\n");
	
	//Send some data
	message = "GET / HTTP/1.1\r\n\r\n";
	if(send(socket_desc , message , strlen(message) , 0) < 0)
	{
		puts("Send failed");
		return 1;
	}
	puts("Data Send\n");
	
	return 0;
}
In the above example , we first connect to an ip address and then send the string message "GET / HTTP/1.1\r\n\r\n" to it.
The message is actually a http command to fetch the mainpage of a website.
Now that we have send some data , its time to receive a reply from the server. So lets do it.
Note
When sending data to a socket you are basically writing data to that socket. This is similar to writing data to a file. Hence you can also use the write function to send data to a socket. Later in this tutorial we shall use write function to send data.
4. Receive data on socket
Function recv is used to receive data on a socket. In the following example we shall send the same message as the last example and receive a reply from the server.
#include<stdio.h>
#include<string.h>	//strlen
#include<sys/socket.h>
#include<arpa/inet.h>	//inet_addr

int main(int argc , char *argv[])
{
	int socket_desc;
	struct sockaddr_in server;
	char *message , server_reply[2000];
	
	//Create socket
	socket_desc = socket(AF_INET , SOCK_STREAM , 0);
	if (socket_desc == -1)
	{
		printf("Could not create socket");
	}
		
	server.sin_addr.s_addr = inet_addr("74.125.235.20");
	server.sin_family = AF_INET;
	server.sin_port = htons(80);

	//Connect to remote server
	if (connect(socket_desc , (struct sockaddr *)&server , sizeof(server)) < 0)
	{
		puts("connect error");
		return 1;
	}
	
	puts("Connected\n");
	
	//Send some data
	message = "GET / HTTP/1.1\r\n\r\n";
	if(send(socket_desc , message , strlen(message) , 0) < 0)
	{
		puts("Send failed");
		return 1;
	}
	puts("Data Send\n");
	
	//Receive a reply from the server
	if(recv(socket_desc, server_reply , 2000 , 0) < 0)
	{
		puts("recv failed");
	}
	puts("Reply received\n");
	puts(server_reply);
	
	return 0;
}
Here is the output of the above code :
Connected

Data Send

Reply received

HTTP/1.1 302 Found
Location: http://www.google.co.in/
Cache-Control: private
Content-Type: text/html; charset=UTF-8
Set-Cookie: PREF=ID=0edd21a16f0db219:FF=0:TM=1324644706:LM=1324644706:S=z6hDC9cZfGEowv_o; expires=Sun, 22-Dec-2013 12:51:46 GMT; path=/; domain=.google.com
Date: Fri, 23 Dec 2011 12:51:46 GMT
Server: gws
Content-Length: 221
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">
<TITLE>302 Moved</TITLE></HEAD><BODY>
<H1>302 Moved</H1>
The document has moved
here.
</BODY></HTML>
We can see what reply was send by the server. It looks something like Html, well IT IS html. Google.com replied with the content of the page we requested. Quite simple!
Note
When receiving data on a socket , we are basically reading the data on the socket. This is similar to reading data from a file. So we can also use the read function to read data on a socket. For example :
read(socket_desc, server_reply , 2000);
Now that we have received our reply, its time to close the socket.
5. Close socket
Function close is used to close the socket. Need to include the unistd.h header file for this.
close(socket_desc);
Thats it.
6. Summary
So in the above example we learned how to
1. Create a socket 2. Connect to remote server 3. Send some data 4. Receive a reply
Your web browser also does the same thing when you open www.google.com
This kind of socket activity represents a socket client. A client is an application that connects to a remote system to fetch or retrieve data.
The other kind of socket application is called a socket server. A server is a system that uses sockets to receive incoming connections and provide them with data. It is just the opposite of Client. So www.google.com is a server and your web browser is a client. Or more technically www.google.com is a HTTP Server and your web browser is an HTTP client.
Now its time to do some server tasks using sockets. But before we move ahead there are a few side topics that should be covered just incase you need them.
Get ip address of hostname
When connecting to a remote host , it is necessary to have its IP address. Function gethostbyname is used for this purpose. It takes the domain name as the parameter and returns a structure of type hostent. This structure has the ip information. It is present in netdb.h. Lets have a look at this structure
/* Description of data base entry for a single host. */
struct hostent
{
 char *h_name;			/* Official name of host. */
 char **h_aliases;		/* Alias list. */
 int h_addrtype;		/* Host address type. */
 int h_length;			/* Length of address. */
 char **h_addr_list;		/* List of addresses from name server. */
};
The h_addr_list has the IP addresses. So now lets have some code to use them.
#include<stdio.h> //printf
#include<string.h> //strcpy
#include<sys/socket.h>
#include<netdb.h>	//hostent
#include<arpa/inet.h>

int main(int argc , char *argv[])
{
	char *hostname = "www.google.com";
	char ip[100];
	struct hostent *he;
	struct in_addr **addr_list;
	int i;
		
	if ((he = gethostbyname(hostname)) == NULL)
	{
		//gethostbyname failed
		herror("gethostbyname");
		return 1;
	}
	
	//Cast the h_addr_list to in_addr , since h_addr_list also has the ip address in long format only
	addr_list = (struct in_addr **) he->h_addr_list;
	
	for(i = 0; addr_list[i] != NULL; i++)
	{
		//Return the first one;
		strcpy(ip , inet_ntoa(*addr_list[i]));
	}
	
	printf("%s resolved to : %s" , hostname , ip);
	return 0;
}
Output of the code would look like :
www.google.com resolved to : 74.125.235.20
So the above code can be used to find the ip address of any domain name. Then the ip address can be used to make a connection using a socket.
Function inet_ntoa will convert an IP address in long format to dotted format. This is just the opposite of inet_addr.
So far we have see some important structures that are used. Lets revise them :
1. sockaddr_in - Connection information. Used by connect , send , recv etc.
2. in_addr - Ip address in long format
3. sockaddr
4. hostent - The ip addresses of a hostname. Used by gethostbyname
In the next part we shall look into creating servers using socket. Servers are the opposite of clients, that instead of connecting out to others, they wait for incoming connections.
Socket server
OK now onto server things. Socket servers operate in the following manner
1. Open a socket 2. Bind to a address(and port). 3. Listen for incoming connections. 4. Accept connections 5. Read/Send
We have already learnt how to open a socket. So the next thing would be to bind it.
1. Bind socket to a port
The bind function can be used to bind a socket to a particular "address and port" combination. It needs a sockaddr_in structure similar to connect function.
int socket_desc;
struct sockaddr_in server;
	
//Create socket
socket_desc = socket(AF_INET , SOCK_STREAM , 0);
if (socket_desc == -1)
{
	printf("Could not create socket");
}
	
//Prepare the sockaddr_in structure
server.sin_family = AF_INET;
server.sin_addr.s_addr = INADDR_ANY;
server.sin_port = htons(8888);
	
//Bind
if(bind(socket_desc,(struct sockaddr *)&server , sizeof(server)) < 0)
{
	puts("bind failed");
}
puts("bind done");
Now that bind is done, its time to make the socket listen to connections. We bind a socket to a particular IP address and a certain port number. By doing this we ensure that all incoming data which is directed towards this port number is received by this application.
This makes it obvious that you cannot have 2 sockets bound to the same port.
2. Listen for incoming connections on the socket
After binding a socket to a port the next thing we need to do is listen for connections. For this we need to put the socket in listening mode. Function listen is used to put the socket in listening mode. Just add the following line after bind.
//Listen
listen(socket_desc , 3);
Thats all. Now comes the main part of accepting new connections.
3. Accept connection
Function accept is used for this. Here is the code
#include<stdio.h>
#include<sys/socket.h>
#include<arpa/inet.h>	//inet_addr

int main(int argc , char *argv[])
{
	int socket_desc , new_socket , c;
	struct sockaddr_in server , client;
	
	//Create socket
	socket_desc = socket(AF_INET , SOCK_STREAM , 0);
	if (socket_desc == -1)
	{
		printf("Could not create socket");
	}
	
	//Prepare the sockaddr_in structure
	server.sin_family = AF_INET;
	server.sin_addr.s_addr = INADDR_ANY;
	server.sin_port = htons(8888);
	
	//Bind
	if(bind(socket_desc,(struct sockaddr *)&server , sizeof(server)) < 0)
	{
		puts("bind failed");
	}
	puts("bind done");
	
	//Listen
	listen(socket_desc , 3);
	
	//Accept and incoming connection
	puts("Waiting for incoming connections...");
	c = sizeof(struct sockaddr_in);
	new_socket = accept(socket_desc, (struct sockaddr *)&client, (socklen_t*)&c);
	if (new_socket<0)
	{
		perror("accept failed");
	}
	
	puts("Connection accepted");

	return 0;
}
Program output
Run the program. It should show
bind done
Waiting for incoming connections...
So now this program is waiting for incoming connections on port 8888. Dont close this program , keep it running.
Now a client can connect to it on this port. We shall use the telnet client for testing this. Open a terminal and type
$ telnet localhost 8888
On the terminal you shall get
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Connection closed by foreign host.
And the server output will show
bind done
Waiting for incoming connections...
Connection accepted
So we can see that the client connected to the server. Try the above process till you get it perfect.
4. Get the ip address of the connected client
You can get the ip address of client and the port of connection by using the sockaddr_in structure passed to accept function. It is very simple :
char *client_ip = inet_ntoa(client.sin_addr);
int client_port = ntohs(client.sin_port);
We accepted an incoming connection but closed it immediately. This was not very productive. There are lots of things that can be done after an incoming connection is established. Afterall the connection was established for the purpose of communication. So lets reply to the client.
We can simply use the write function to write something to the socket of the incoming connection and the client should see it. Here is an example :
#include<stdio.h>
#include<string.h>	//strlen
#include<sys/socket.h>
#include<arpa/inet.h>	//inet_addr
#include<unistd.h>	//write

int main(int argc , char *argv[])
{
	int socket_desc , new_socket , c;
	struct sockaddr_in server , client;
	char *message;
	
	//Create socket
	socket_desc = socket(AF_INET , SOCK_STREAM , 0);
	if (socket_desc == -1)
	{
		printf("Could not create socket");
	}
	
	//Prepare the sockaddr_in structure
	server.sin_family = AF_INET;
	server.sin_addr.s_addr = INADDR_ANY;
	server.sin_port = htons(8888);
	
	//Bind
	if(bind(socket_desc,(struct sockaddr *)&server , sizeof(server)) < 0)
	{
		puts("bind failed");
		return 1;
	}
	puts("bind done");
	
	//Listen
	listen(socket_desc , 3);
	
	//Accept and incoming connection
	puts("Waiting for incoming connections...");
	c = sizeof(struct sockaddr_in);
	new_socket = accept(socket_desc, (struct sockaddr *)&client, (socklen_t*)&c);
	if (new_socket<0)
	{
		perror("accept failed");
		return 1;
	}
	
	puts("Connection accepted");
	
	//Reply to the client
	message = "Hello Client , I have received your connection. But I have to go now, bye\n";
	write(new_socket , message , strlen(message));
	
	return 0;
}
Run the above code in 1 terminal. And connect to this server using telnet from another terminal and you should see this :
$ telnet localhost 8888
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hello Client , I have received your connection. But I have to go now, bye
Connection closed by foreign host.
So the client(telnet) received a reply from server.
We can see that the connection is closed immediately after that simply because the server program ends after accepting and sending reply. A server like www.google.com is always up to accept incoming connections.
It means that a server is supposed to be running all the time. Afterall its a server meant to serve. So we need to keep our server RUNNING non-stop. The simplest way to do this is to put the accept in a loop so that it can receive incoming connections all the time.
5. Live Server
So a live server will be alive for all time. Lets code this up :
#include<stdio.h>
#include<string.h>	//strlen
#include<sys/socket.h>
#include<arpa/inet.h>	//inet_addr
#include<unistd.h>	//write

int main(int argc , char *argv[])
{
	int socket_desc , new_socket , c;
	struct sockaddr_in server , client;
	char *message;
	
	//Create socket
	socket_desc = socket(AF_INET , SOCK_STREAM , 0);
	if (socket_desc == -1)
	{
		printf("Could not create socket");
	}
	
	//Prepare the sockaddr_in structure
	server.sin_family = AF_INET;
	server.sin_addr.s_addr = INADDR_ANY;
	server.sin_port = htons(8888);
	
	//Bind
	if(bind(socket_desc,(struct sockaddr *)&server , sizeof(server)) < 0)
	{
		puts("bind failed");
		return 1;
	}
	puts("bind done");
	
	//Listen
	listen(socket_desc , 3);
	
	//Accept and incoming connection
	puts("Waiting for incoming connections...");
	c = sizeof(struct sockaddr_in);
	while((new_socket = accept(socket_desc, (struct sockaddr *)&client, (socklen_t*)&c)))
	{
		puts("Connection accepted");
		
		//Reply to the client
		message = "Hello Client , I have received your connection. But I have to go now, bye\n";
		write(new_socket , message , strlen(message));
	}
	
	if (new_socket<0)
	{
		perror("accept failed");
		return 1;
	}
	
	return 0;
}
We havent done a lot there. Just the accept was put in a loop.
Now run the program in 1 terminal , and open 3 other terminals. From each of the 3 terminal do a telnet to the server port.
Each of the telnet terminal would show :
$ telnet localhost 8888
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hello Client , I have received your connection. But I have to go now, bye
And the server terminal would show
bind done
Waiting for incoming connections...
Connection accepted
Connection accepted
Connection accepted
So now the server is running nonstop and the telnet terminals are also connected nonstop. Now close the server program.
All telnet terminals would show "Connection closed by foreign host."
Good so far. But still there is not effective communication between the server and the client.
The server program accepts connections in a loop and just send them a reply, after that it does nothing with them. Also it is not able to handle more than 1 connection at a time. So now its time to handle the connections , and handle multiple connections together.
6. Handle multiple socket connections with threads
To handle every connection we need a separate handling code to run along with the main server accepting connections.
One way to achieve this is using threads. The main server program accepts a connection and creates a new thread to handle communication for the connection, and then the server goes back to accept more connections.
On Linux threading can be done with the pthread (posix threads) library. It would be good to read some small tutorial about it if you dont know anything about it. However the usage is not very complicated.
We shall now use threads to create handlers for each connection the server accepts. Lets do it pal.
#include<stdio.h>
#include<string.h>	//strlen
#include<stdlib.h>	//strlen
#include<sys/socket.h>
#include<arpa/inet.h>	//inet_addr
#include<unistd.h>	//write

#include<pthread.h> //for threading , link with lpthread

void *connection_handler(void *);

int main(int argc , char *argv[])
{
	int socket_desc , new_socket , c , *new_sock;
	struct sockaddr_in server , client;
	char *message;
	
	//Create socket
	socket_desc = socket(AF_INET , SOCK_STREAM , 0);
	if (socket_desc == -1)
	{
		printf("Could not create socket");
	}
	
	//Prepare the sockaddr_in structure
	server.sin_family = AF_INET;
	server.sin_addr.s_addr = INADDR_ANY;
	server.sin_port = htons(8888);
	
	//Bind
	if(bind(socket_desc,(struct sockaddr *)&server , sizeof(server)) < 0)
	{
		puts("bind failed");
		return 1;
	}
	puts("bind done");
	
	//Listen
	listen(socket_desc , 3);
	
	//Accept and incoming connection
	puts("Waiting for incoming connections...");
	c = sizeof(struct sockaddr_in);
	while((new_socket = accept(socket_desc, (struct sockaddr *)&client, (socklen_t*)&c)))
	{
		puts("Connection accepted");
		
		//Reply to the client
		message = "Hello Client , I have received your connection. And now I will assign a handler for you\n";
		write(new_socket , message , strlen(message));
		
		pthread_t sniffer_thread;
		new_sock = malloc(1);
		*new_sock = new_socket;
		
		if(pthread_create(&sniffer_thread , NULL , connection_handler , (void*) new_sock) < 0)
		{
			perror("could not create thread");
			return 1;
		}
		
		//Now join the thread , so that we dont terminate before the thread
		//pthread_join(sniffer_thread , NULL);
		puts("Handler assigned");
	}
	
	if (new_socket<0)
	{
		perror("accept failed");
		return 1;
	}
	
	return 0;
}

/*
 * This will handle connection for each client
 * */
void *connection_handler(void *socket_desc)
{
	//Get the socket descriptor
	int sock = *(int*)socket_desc;
	
	char *message;
	
	//Send some messages to the client
	message = "Greetings! I am your connection handler\n";
	write(sock , message , strlen(message));
	
	message = "Its my duty to communicate with you";
	write(sock , message , strlen(message));
	
	//Free the socket pointer
	free(socket_desc);
	
	return 0;
}
Run the above server and open 3 terminals like before. Now the server will create a thread for each client connecting to it.
The telnet terminals would show :
$ telnet localhost 8888
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hello Client , I have received your connection. And now I will assign a handler for you
Hello I am your connection handler
Its my duty to communicate with you
This one looks good , but the communication handler is also quite dumb. After the greeting it terminates. It should stay alive and keep communicating with the client.
One way to do this is by making the connection handler wait for some message from a client as long as the client is connected. If the client disconnects , the connection handler ends.
So the connection handler can be rewritten like this :
/*
 * This will handle connection for each client
 * */
void *connection_handler(void *socket_desc)
{
	//Get the socket descriptor
	int sock = *(int*)socket_desc;
	int read_size;
	char *message , client_message[2000];
	
	//Send some messages to the client
	message = "Greetings! I am your connection handler\n";
	write(sock , message , strlen(message));
	
	message = "Now type something and i shall repeat what you type \n";
	write(sock , message , strlen(message));
	
	//Receive a message from client
	while((read_size = recv(sock , client_message , 2000 , 0)) > 0)
	{
		//Send the message back to client
		write(sock , client_message , strlen(client_message));
	}
	
	if(read_size == 0)
	{
		puts("Client disconnected");
		fflush(stdout);
	}
	else if(read_size == -1)
	{
		perror("recv failed");
	}
		
	//Free the socket pointer
	free(socket_desc);
	
	return 0;
}
The above connection handler takes some input from the client and replies back with the same. Simple! Here is how the telnet output might look
$ telnet localhost 8888
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hello Client , I have received your connection. And now I will assign a handler for you
Greetings! I am your connection handler
Now type something and i shall repeat what you type
Hello
Hello
How are you
How are you
I am fine
I am fine
So now we have a server thats communicative. Thats useful now.
Linking the pthread library
When compiling programs that use the pthread library you need to link the library. This is done like this :
$ gcc program.c -lpthread
Conclusion
By now you must have learned the basics of socket programming in C. You can try out some experiments like writing a chat client or something similar.
If you think that the tutorial needs some addons or improvements or any of the code snippets above dont work then feel free to make a comment below so that it gets fixed.

https://www.binarytides.com/raw-sockets-c-code-linux/
How to Code Raw Sockets in C on Linux
By Silver Moon | July 26, 2020
39 Comments
· Facebook
· Twitter
· Pinterest
· LinkedIn
Raw tcp sockets in C
Raw sockets can be used to construct a packet manually inside an application. In normal sockets when any data is send over the network, the kernel of the operating system adds some headers to it like IP header and TCP header. So an application only needs to take care of what data it is sending and what reply it is expecting.
But there are other cases when an application needs to set its own headers. Raw sockets are used in security related applications like nmap , packets sniffer etc.
In this article we are going to program raw sockets on linux using native sockets.
Windows for example does not support raw socket programming directly. To program raw sockets on windows a packet crafting library like winpcap has to be used.
In this article we are going to do some raw socket programming by constructing a raw TCP packet and sending it over the network. Before programming raw sockets, it is recommended that you learn about the basics of socket programming in c.
Raw TCP packets
A TCP packet is constructed like this
Packet = IP Header + TCP Header + Data
The plus means to attach the binary data side by side. So when making a raw tcp packet we need to know how to construct the headers properly. The structures of all headers are established standards which are described in RFCs.
IP Header Structure
The structure of IP Header as given by RFC 791 :
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Version| IHL |Type of Service| Total Length |
+-+
| Identification |Flags| Fragment Offset |
+-+
| Time to Live | Protocol | Header Checksum |
+-+
| Source Address |
+-+
| Destination Address |
+-+
| Options | Padding |
+-+
The "Source Address" field stores the ip address of the system sending the packet and the "Destination Address" contains the ip address of the destination system. Ip addresses are stored in long number format. The "Protocol" field stores a number that indicates the protocol, which is TCP in this case.
Structure of TCP header
The structure of a TCP header as given by RFC 793
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
+-+
So we need to construct the headers according to the formats specified above.
Raw tcp sockets
Create a raw socket like this
int s = socket (AF_INET, SOCK_RAW, IPPROTO_TCP);
The above function call creates a raw socket of protocol TCP. This means that we have to provide the TCP header along with the data. The kernel or the network stack of Linux shall provide the IP header.
If we want to provide the IP header as well then there are 2 ways of doing this
1. Use protocol IPPROTO_RAW - This will allow to specify the IP header and everything that is contained in the packet.
int s = socket (AF_INET, SOCK_RAW, IPPROTO_RAW);
2. Set the IP_HDRINCL socket option to 1 - This is same as the above. Just another way of doing.
int s = socket (AF_INET, SOCK_RAW, IPPROTO_TCP);

int one = 1;
const int *val = &one;
if (setsockopt (s, IPPROTO_IP, IP_HDRINCL, val, sizeof (one)) < 0)
{
	printf ("Error setting IP_HDRINCL. Error number : %d . Error message : %s \n" , errno , strerror(errno));
	exit(0);
}
When using the IP_HDRINCL the protocol used in the socket function is effectively of no use.
In this example we are creating raw sockets where we specify the Ip header and TCP header. The packet that moves out of the machine actually has 1 more header attached to it called the Ethernet header. So the actual packet structure is somewhat like this. Packet = Ethernet header + Ip header + TCP header + Data Take a look at the packets sniffed by wireshark to understand this better. It is important to note here that the Ethernet header is provided by the OS kernel and we do not have to construct it. However it is possible to make such raw packets where we can even specify the ethernet header, but we shall look into those in a separate article.
Below is an example code which constructs a raw TCP packet with some data
Final Code
/*
	Raw TCP packets
*/
#include <stdio.h>	//for printf
#include <string.h> //memset
#include <sys/socket.h>	//for socket ofcourse
#include <stdlib.h> //for exit(0);
#include <errno.h> //For errno - the error number
#include <netinet/tcp.h>	//Provides declarations for tcp header
#include <netinet/ip.h>	//Provides declarations for ip header
#include <arpa/inet.h> // inet_addr
#include <unistd.h> // sleep()

/*
	96 bit (12 bytes) pseudo header needed for tcp header checksum calculation
*/
struct pseudo_header
{
	u_int32_t source_address;
	u_int32_t dest_address;
	u_int8_t placeholder;
	u_int8_t protocol;
	u_int16_t tcp_length;
};

/*
	Generic checksum calculation function
*/
unsigned short csum(unsigned short *ptr,int nbytes)
{
	register long sum;
	unsigned short oddbyte;
	register short answer;

	sum=0;
	while(nbytes>1) {
		sum+=*ptr++;
		nbytes-=2;
	}
	if(nbytes==1) {
		oddbyte=0;
		((u_char)&oddbyte)=*(u_char*)ptr;
		sum+=oddbyte;
	}

	sum = (sum>>16)+(sum & 0xffff);
	sum = sum + (sum>>16);
	answer=(short)~sum;
	
	return(answer);
}

int main (void)
{
	//Create a raw socket
	int s = socket (PF_INET, SOCK_RAW, IPPROTO_TCP);
	
	if(s == -1)
	{
		//socket creation failed, may be because of non-root privileges
		perror("Failed to create socket");
		exit(1);
	}
	
	//Datagram to represent the packet
	char datagram[4096] , source_ip[32] , *data , *pseudogram;
	
	//zero out the packet buffer
	memset (datagram, 0, 4096);
	
	//IP header
	struct iphdr *iph = (struct iphdr *) datagram;
	
	//TCP header
	struct tcphdr *tcph = (struct tcphdr *) (datagram + sizeof (struct ip));
	struct sockaddr_in sin;
	struct pseudo_header psh;
	
	//Data part
	data = datagram + sizeof(struct iphdr) + sizeof(struct tcphdr);
	strcpy(data , "ABCDEFGHIJKLMNOPQRSTUVWXYZ");
	
	//some address resolution
	strcpy(source_ip , "192.168.1.2");
	sin.sin_family = AF_INET;
	sin.sin_port = htons(80);
	sin.sin_addr.s_addr = inet_addr ("1.2.3.4");
	
	//Fill in the IP Header
	iph->ihl = 5;
	iph->version = 4;
	iph->tos = 0;
	iph->tot_len = sizeof (struct iphdr) + sizeof (struct tcphdr) + strlen(data);
	iph->id = htonl (54321);	//Id of this packet
	iph->frag_off = 0;
	iph->ttl = 255;
	iph->protocol = IPPROTO_TCP;
	iph->check = 0;		//Set to 0 before calculating checksum
	iph->saddr = inet_addr (source_ip);	//Spoof the source ip address
	iph->daddr = sin.sin_addr.s_addr;
	
	//Ip checksum
	iph->check = csum ((unsigned short *) datagram, iph->tot_len);
	
	//TCP Header
	tcph->source = htons (1234);
	tcph->dest = htons (80);
	tcph->seq = 0;
	tcph->ack_seq = 0;
	tcph->doff = 5;	//tcp header size
	tcph->fin=0;
	tcph->syn=1;
	tcph->rst=0;
	tcph->psh=0;
	tcph->ack=0;
	tcph->urg=0;
	tcph->window = htons (5840);	/* maximum allowed window size */
	tcph->check = 0;	//leave checksum 0 now, filled later by pseudo header
	tcph->urg_ptr = 0;
	
	//Now the TCP checksum
	psh.source_address = inet_addr(source_ip);
	psh.dest_address = sin.sin_addr.s_addr;
	psh.placeholder = 0;
	psh.protocol = IPPROTO_TCP;
	psh.tcp_length = htons(sizeof(struct tcphdr) + strlen(data));
	
	int psize = sizeof(struct pseudo_header) + sizeof(struct tcphdr) + strlen(data);
	pseudogram = malloc(psize);
	
	memcpy(pseudogram , (char*) &psh , sizeof (struct pseudo_header));
	memcpy(pseudogram + sizeof(struct pseudo_header) , tcph , sizeof(struct tcphdr) + strlen(data));
	
	tcph->check = csum((unsigned short*) pseudogram , psize);
	
	//IP_HDRINCL to tell the kernel that headers are included in the packet
	int one = 1;
	const int *val = &one;
	
	if (setsockopt (s, IPPROTO_IP, IP_HDRINCL, val, sizeof (one)) < 0)
	{
		perror("Error setting IP_HDRINCL");
		exit(0);
	}
	
	//loop if you want to flood :)
	while (1)
	{
		//Send the packet
		if (sendto (s, datagram, iph->tot_len ,	0, (struct sockaddr *) &sin, sizeof (sin)) < 0)
		{
			perror("sendto failed");
		}
		//Data send successfully
		else
		{
			printf ("Packet Send. Length : %d \n" , iph->tot_len);
		}
 // sleep for 1 seconds
 sleep(1);
	}
	
	return 0;
}

//Complete
Compile and Run
Compile by program by doing a gcc raw_socket.c at the terminal. Remember to run the program with root privileges. Raw sockets require root privileges.
$ gcc raw_socket.c -o raw_socket
$ sudo ./raw_socket
Note the while loop in the above program. It has been put for testing purpose and should be removed if you dont intend to flood the target.
Use a packet sniffer like wireshark to check the output and verify that the packets have actually been generated and send over the network. Also note that if some kind of firewall like firestarter is running then it might block raw packets.
Resources
http://linux.die.net/man/7/raw

https://www.binarytides.com/raw-sockets-packets-with-winpcap/
Raw socket programming on windows with Winpcap
By Silver Moon | August 1, 2020
22 Comments
· Facebook
· Twitter
· Pinterest
· LinkedIn
Raw sockets with winpcap
A previous post explains how to send raw packets using winsock api on windows xp.
However the winsock api has limited raw socket support in windows versions greater than windows xp+sp1.
Therefore winpcap has to be used to send raw packets on higher windows versions.
Winpcap is a packet driver useful for packet capturing and sending raw packets on the windows platform.
Raw means we have to cook the whole packet ourselves.
A TCP packet for example consists of:
1. Ethernet header 2. IP header 3. TCP header 4. The data supposed to be send
PACKET = ETHERNET_HEADER + IP_HEADER + TCP_HEADER + DATA
Each header has its own job to do in the whole transmission process.
Code :
u_char packet[65536];
Winpcap gives us one function called pcap_sendpacket() to throw the packet on the network adapter which forwards it. We have to responsibly construct the ethernet , ip and tcp headers and attach the data.
Ethernet Header
Structure
+-+
| Ethernet destination address (first 32 bits) |
+-+
| Ethernet dest (last 16 bits) |Ethernet source (first 16 bits)|
+-+
| Ethernet source address (last 32 bits) |
+-+
| Type code | |
+-+
C structure for ethernet header :
//Ethernet Header
typedef struct ethernet_header
{
	UCHAR dest[6]; //Total 48 bits
	UCHAR source[6]; //Total 48 bits
	USHORT type; //16 bits
} ETHER_HDR , *PETHER_HDR , FAR * LPETHER_HDR , ETHERHeader;
Ethernet destination address is the mac-address of the primary gateway of the network interface being used.
Ethernet source is the mac-address of the network interface itself.
Type field determines the type of the packet e.g. IP , ARP etc.
Now our first task is to get the source and destination mac address.
Winpcap gives the ip-addresses of all available network interfaces that can be used.
Get Mac address
If srcip has the source ip in in_addr or long format then we can get the mac-address of this ip address using the function GetMacAddress. This function is codes in the source code.
GetMacAddress(s_mac , srcip);
printf("Selected device has mac address : %.2X-%.2X-%.2X-%.2X-%.2X-%.2X",s_mac[0],s_mac[1],s_mac[2],s_mac[3],s_mac[4],s_mac[5]);
GetMacAddress is like :
void GetMacAddress(unsigned char *mac , in_addr destip)
{
 DWORD ret;
 in_addr srcip;
 ULONG MacAddr[2];
 ULONG PhyAddrLen = 6; /* default to length of six bytes */

 srcip.s_addr=0;

 //Now print the Mac address also
 ret = SendArp(destip , srcip , MacAddr , &PhyAddrLen);
 if(PhyAddrLen) {
 BYTE *bMacAddr = (BYTE *) & MacAddr;
 for (int i = 0; i < (int) PhyAddrLen; i++)
 mac[i] = (char)bMacAddr[i];
 }
}
SendArp is the method that is used to retrieve the "mac-address of a IP". It is defined in iphlpapi.dll
The above demonstration is mostly self-explaining. We got the mac-address of the network interface or IP we want to use. This method shall be used to get the mac address of local computer and the gateway.
Next task is to get the ip address of the primary gateway of a certain interface.
Get the Gateway IP
Next we need the IP address of the primary gateway of this interface and then it mac-address.
GetGateway gets the gateway :
void GetGateway(struct in_addr ip , char *sgatewayip , int *gatewayip) {
 char pAdapterInfo[5000];
 PIP_ADAPTER_INFO AdapterInfo;
 ULONG OutBufLen = sizeof(pAdapterInfo) ;

 GetAdaptersInfo((PIP_ADAPTER_INFO) pAdapterInfo, &OutBufLen);
 for(AdapterInfo = (PIP_ADAPTER_INFO)pAdapterInfo; AdapterInfo ; AdapterInfo = AdapterInfo->Next) {
 if(ip.s_addr == inet_addr(AdapterInfo->IpAddressList.IpAddress.String))
 strcpy(sgatewayip , AdapterInfo->GatewayList.IpAddress.String);
 }
 *gatewayip = inet_addr(sgatewayip);
}
GetAdaptersInfo is the function that retrieves a lot of information about a adapter.
This and SendArp are inside iphlpapi.dll ; IP helper api which we shall load and get the function pointers inside!
Buzz!
void loadiphlpapi() {
 HINSTANCE hDll = LoadLibrary("iphlpapi.dll");

 GetAdaptersInfo = (pgetadaptersinfo)GetProcAddress(hDll,"GetAdaptersInfo");
 if(GetAdaptersInfo==NULL)
 printf("Error in iphlpapi.dll%d",GetLastError());
 SendArp = (psendarp)GetProcAddress(hDll,"SendARP");
 if(SendArp==NULL)
 printf("Error in iphlpapi.dll%d",GetLastError());
}
By now we have the following information available :
1. Source IP address - IP of local computer.
2. Mac address of local computer.
3. Primary gateway of local computer.
4. Mac address of primary gateway.
The above 4 things are enough to build the ethernet header. Enjoy!
It is simple as :
ETHER_HDR *ehdr;
memcpy(ehdr->source , s_mac , 6); //Source Mac address
memcpy(ehdr->dest,d_mac,6); //Destination MAC address
ehdr->type = htons(0x0800); //IP Frames
TCP Packet Structure
The tcp packet structure has 2 parts. The IP header and the TCP header. First we shall take a look at the structures as defined in the RFC and then code them in C.
IP Header
RFC 791 gives the structure of an IP header as:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Version| IHL |Type of Service| Total Length |
+-+
| Identification |Flags| Fragment Offset |
+-+
| Time to Live | Protocol | Header Checksum |
+-+
| Source Address |
+-+
| Destination Address |
+-+
| Options | Padding |
+-+
C structure for IP header:
typedef struct ip_hdr
{
 unsigned char ip_header_len:4; // 4-bit header length (in 32-bit words) normally=5 (Means 20 Bytes may be 24 also)
 unsigned char ip_version :4; // 4-bit IPv4 version
 unsigned char ip_tos; // IP type of service
 unsigned short ip_total_length; // Total length
 unsigned short ip_id; // Unique identifier

 unsigned char ip_frag_offset :5; // Fragment offset field

 unsigned char ip_more_fragment :1;
 unsigned char ip_dont_fragment :1;
 unsigned char ip_reserved_zero :1;

 unsigned char ip_frag_offset1; //fragment offset

 unsigned char ip_ttl; // Time to live
 unsigned char ip_protocol; // Protocol(TCP,UDP etc)
 unsigned short ip_checksum; // IP checksum
 unsigned int ip_srcaddr; // Source address
 unsigned int ip_destaddr; // Source address
} IPV4_HDR, *PIPV4_HDR, FAR * LPIPV4_HDR , IPHeader;
TCP Header
The following is the structure of a TCP header.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
| Data | |U|A|P|R|S|F| |
| Offset| Reserved |R|C|S|S|Y|I| Window |
| | |G|K|H|T|N|N| |
+-+
| Checksum | Urgent Pointer |
+-+
| Options | Padding |
+-+
| data |
+-+
C structure for TCP header:
// TCP header
typedef struct tcp_header
{
 unsigned short source_port; // source port
 unsigned short dest_port; // destination port
 unsigned int sequence; // sequence number - 32 bits
 unsigned int acknowledge; // acknowledgement number - 32 bits

 unsigned char ns :1; //Nonce Sum Flag Added in RFC 3540.
 unsigned char reserved_part1:3; //according to rfc
 unsigned char data_offset:4; /*The number of 32-bit words
 in the TCP header.
 This indicates where the data begins.
 The length of the TCP header
 is always a multiple
 of 32 bits.*/

 unsigned char fin :1; //Finish Flag
 unsigned char syn :1; //Synchronise Flag
 unsigned char rst :1; //Reset Flag
 unsigned char psh :1; //Push Flag
 unsigned char ack :1; //Acknowledgement Flag
 unsigned char urg :1; //Urgent Flag

 unsigned char ecn :1; //ECN-Echo Flag
 unsigned char cwr :1; //Congestion Window Reduced Flag

 ////////////////////////////////

 unsigned short window; // window
 unsigned short checksum; // checksum
 unsigned short urgent_pointer; // urgent pointer
} TCP_HDR , *PTCP_HDR , FAR * LPTCP_HDR , TCPHeader , TCP_HEADER;
Build the IP and TCP Headers
// ******************* IP Header *****************
 iphdr = (PIPV4_HDR)(packet + sizeof(ETHER_HDR));

 iphdr->ip_version = 4;
 iphdr->ip_header_len = 5; //In double words thats 4 bytes
 iphdr->ip_tos = 0;
 iphdr->ip_total_length = htons (sizeof(IPV4_HDR) + sizeof(TCP_HDR) + strlen(dump));
 iphdr->ip_id = htons(2);
 iphdr->ip_frag_offset = 0;
 iphdr->ip_reserved_zero=0;
 iphdr->ip_dont_fragment=1;
 iphdr->ip_more_fragment=0;
 iphdr->ip_frag_offset1 = 0;
 iphdr->ip_ttl = 3;
 iphdr->ip_protocol = IPPROTO_TCP;
 iphdr->ip_srcaddr = inet_addr("1.2.3.4"); //srcip.s_addr;
 iphdr->ip_destaddr = inet_addr("1.2.3.5");
 iphdr->ip_checksum =0;
 iphdr->ip_checksum = in_checksum((unsigned short*)iphdr, sizeof(IPV4_HDR));

 // ******************* TCP Header *****************
 tcphdr = (PTCP_HDR)(packet + sizeof(ETHER_HDR) + sizeof(IPV4_HDR));

 tcphdr->source_port = htons(SOURCE_PORT);
 tcphdr->dest_port = htons(80);
 tcphdr->sequence=0;
 tcphdr->acknowledge=0;
 tcphdr->reserved_part1=0;
 tcphdr->data_offset=5;
 tcphdr->fin=0;
 tcphdr->syn=1;
 tcphdr->rst=0;
 tcphdr->psh=0;
 tcphdr->ack=0;
 tcphdr->urg=0;
 tcphdr->ecn=0;
 tcphdr->cwr=0;
 tcphdr->window = htons(64240);
 tcphdr->checksum=0;
 tcphdr->urgent_pointer = 0;
Add some Data
After preparing the IP and TCP headers we can add application data to the packet.
char *dump = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
data = (char*)(packet + sizeof(ETHER_HDR) + sizeof(IPV4_HDR) + sizeof(TCP_HDR));
strcpy(data,dump);
Send Packet
The pcap_sendpacket function is used to send the raw packet on the network. The call to the function looks as follows:
pcap_sendpacket(fp , packet , sizeof(ETHER_HDR) + sizeof(IPV4_HDR) + sizeof(TCP_HDR) + strlen(dump));
Thats should send the packet. Use Wireshark to check whether the packet was successfully transmitted.
The above was an example of a TCP packet. Similarly UDP ICMP or any other packet can be build.
Compile and Run
The download link for the source code is given below. It is a VC++ 6.0 project. Open then and compile and run.
This program needs Winpcap.
Download and install winpcap. Also download the winpcap developer files which include the necessary headers (pcap.h and others) and the library files (wpcap.lib) to be linked.
Place the winpcap header and library files somewhere in your project workspace. Then in Vc++ go to Tools > Options > Directories and add the directory path of include and library files.
When compiling you might get a Winpcap error related to _W64 macro. Follow this article to solve it.
Output
Username : abc
Retrieving the available devices...Retrieved.
The following devices found :

1)
rpcap://\Device\NPF_{EA7C1F00-CD10-4288-8B0D-EBD63C22F468}
Description: Network adapter 'Intel(R) 82566DC Gigabit Network Connection (Micro
soft's Packet Scheduler) ' on local host
Loopback: No
Address Family: #2
Address Family Name: AF_INET
Address: 192.168.0.101
Netmask: 255.255.255.0
Broadcast Address: 255.255.255.255

Enter the device number you want to use : 1
Selected device has mac address : 00-1C-C0-F8-79-EE
Selected device has gateway : 192.168.0.1 (Mac : 00-1E-58-B8-D4-69)
Opening the selected device...Opened
Sending Packet...Send
Press any key to continue
Download Full Source Code
The full source code for the above program can be downloaded here:
Download Source Code
Conclusion
The program by default sends 1 packet. If you want to flood the destination then uncomment the while loop.
If any firewall like Zonealarm is running then packets might not be send.
So switch them off when experimenting with this code.
If you have any questions or feedback, let us know in the comments below.

