

37 – in – 1 Sensor Kit for Arduino

BuildiŶg ǁith the ͞37 – in – 1

“eŶsor Kit for ArduiŶo͟
module.

By: Tyson Popynick

Aus Electronics Direct

http://www.auselectronicsdirect.com.au/

ϭ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Foreword

This guide is a brief rundown of the sensors you will find in this kit. The kit is more of a starter

set for Arduino, there are 37 components inside, however there are not 37 individual sensors.

There are also LEDs, and other modules in the kit. That would perhaps be a better name for the

kit. 37 – in – 1 module kit.

Regardless, you have purchased a fantastic set of components to get you started! You can

measure light, time, magnetic fields, temperature, humidity…you can measure sound and create

sound, you can measure tilt and user input! All of these components are presented on easy to

access boards and allow you to connect them rapidly to the Arduino board.

Ϯ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Table of Contents

Installing Libraries .. 3

3-Pin Analog Sensors ... 7

Photoresistor .. 7

Analog Hall .. 7

Hall Magnetic .. 7

3-Pin Digital Sensors .. 11

Tilt Switch ... 11

Ball Switch .. 11

Mini-Reed ... 11

Tracking .. 11

Light Blocking .. 11

Analog + Digital Sensor .. 15

Flame Sensor .. 15

Linear Hall ... 15

Big Sound .. 15

Touch .. 15

Small Sound .. 15

Digital Temp .. 15

Tracking .. 15

Reed Switch .. 15

Button .. 21

Buzzer ... 24

18B20 Digital Temp .. 27

Heartbeat Detector .. 31

IR Receiver and Transmitter .. 34

Joystick ... 41

ϯ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Laser ... 46

Magic Light cup .. 50

Multi-LED Package ... 52

7 Color Flash and Fade ... 52

Two-Color(Small) ... 52

Two-Color(Large) ... 52

Relay ... 57

RGB LEDs .. 60

Rotary Encoder... 64

Temp & Humidity ... 68

Thermistor(Analog Temp) ... 72

ϰ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Key Skill – Installing Libraries

ϱ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

What is a library?

A library is a repository of functions. It is a set of files that contain code that can run your

modules, usually with a really simple way of interfacing and controlling your project. For

iŶstaŶĐe, ǁe ĐaŶ iŶĐlude a liďrarǇ to ĐoŶtrol aŶ OLED displaǇ…We ǁill then not have to worry

about coding any of the difficult and time consuming Arduino->screen communication protocol,

instead we can simply draw on the screen. It is in a small way like drivers on your computer,

although libraries might include math functions, graphics functions, there is a library called

bounce that debounces inputs! I will show you how to find and install these libraries in this

guide.

How do I find these libraries in order to install them?

Arduino IDE includes a nice little interface called the library manager where we can search and

install libraries without needing to copy any files etc, it is all done automatically! In the Arduino

IDE locate the menu bar at the top of the window. (File..Edit..Sketch)

To open Library Manager:

Click the Sketch menu->Include Libraries->Manage Libraries

This will open the Library Manager window. Here you can search for libraries, select the one you

like and click install. The library will then be installed.

ϲ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

How do I access the library, once it is installed?

Once the library manager installs the library a confirmation message will appear above the black

output window at the base of the IDE. You can then locate the libraries you have installed

through the Sketch menu as follows:

Open the Sketch menu->Include Library->Select the library you wish to include. This will add the

#Include statement automatically at the top of the sketch.

ϳ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

You can also install libraries by allowing the library manager to unzip them and add the files to

the correct directory, or ŵaŶuallǇ addiŶg the files to the direĐtorǇ…If Ǉou Đoŵe aĐross those
scenarios however, there will be instructions included on the page along with them.

NOTES:

ϴ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 3

Type of pins used ANALOG

MODULES – The 3-pin Analog Sensor Module

ϵ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Which Sensors does this apply to?

This applies to any sensor that has 3 pins and puts out a voltage proportionate to its value.

In the 37-in-1 kit this includes:

 Photoresistor

Measures light, resistance varies depending on brightness

 Analog Hall

Measures movement through magnetic fields

 Hall Magnetic (Yes, similar device to analog hall)

Measures movement through magnetic fields. This one has an LED that lights in the

presence of a strong field.

Why are a lot of sensors so similar to use?

In electronics voltage is fairly easy to determine, as well as being easy enough to manipulate and

retain its value. The vast majority of sensors will fit this description, sometimes they are

ŵouŶted oŶ ďoards that ŵight add features, suĐh as the ͞AŶalog/Digital “eŶsor ŵodule͟
boards.

1. The sensor will have an input voltage, and ground connection and a pin that will output a value that is

between the input and 0V. The value will be directly proportionate to the measurement made.

2. The pins will be labeled, and may not always be in the same order, so hook them up the way they are

labelled even if it is slightly different to this guide. This guide is accurate for any sensor mounted on the

board pictured on the section-intro above.

By making these modular boards able to take any sensor essentially and have hobbyists simply

able to use it, regardless of having read the fact-sheet etc is amazing! Arduino is simply an

amazing system.

The pins on these modules are as follow:

 S: Signal/Sensor Out
This pin will output a voltage between 0v and + which is directly proportionate to the measurement of the

sensor. This pin is connected to an analog in.

 +: Vs/ Positive supply (5V max)
The middle pin is for +5V or +3.3V. This will power the sensor and give a reference voltage for the output.

This will be connected to +5V or +3.3V on the Arduino.

 -: GND
The final leg is GND and allows a return path for current, completing the circuit. This should be connected to

your Arduino GND.

ϭϬ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Circuit:

In this configuration ǁe use ͞aŶalogRead;AϬͿ͟ to get the aŶalog ǀalue.

Example Code:
//----Begin Code (copy from here)----

/*

Set the variables below to the desired values, there are also predefined

functions at the bottom of the sketch you can use in your own projects

*/

//Includes:

//Variables:

int delayVal = 500; //Time to delay between reads.

int debug_values = 1; //1 = show values in serial / 0 = hide.

void setup() {

 // put your setup code here, to run once:

Serial.begin(9600); //Open serial connection

Serial.println("Analog Sensor Test Sketch...\nReading Sensor.");

}

void loop() {

 // put your main code here, to run repeatedly:

int sensorVal = analogRead(A0);

if (sensorVal >= thresholdVal) { //If sensor value is equal or above threshold value set at the top of the sketch, trigger function

 aboveThresh(sensorVal);

ϭϭ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

}

if (sensorVal < thresholdVal) { //If sensor value is below threshold value set at the top of the sketch, trigger function

 belowthresh(sensorVal);

}

 //debug

if (debug_values) {

Serial.print("Sensor value: ");

Serial.println(sensorVal);

}

//delay

delay(delayVal);

}

//Custom functions

void aboveThresh(int value) {

//All actions in this function will be performed every loop that the sensor value is above the threshold

}

void belowThresh(int value) {

//All actions in this function will be performed every loop that the sensor value is below the threshold

}

//----End Code (copy to here)----

Expected Output:

In the example above I used a 3-pin photoresistor (light) Sensor. The reading changes as I shine

light on it. Have a play with different modules and take note if they respond to stimuli the way

you thought they would.

ϭϮ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 3

Type of pins used DIGITAL

MODULES – The 3-pin Digital Sensor Module

ϭϯ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Which Sensors does this apply to?

This applies to any sensor that has 3 pins and puts either a 5V (HIGH) or 0V (LOW) signal

depending on the sensor state.

In the 37-in-1 kit this includes:

 Tilt Switch

Activates when the mercury moves to one end of the tube.

 Ball Switch

Activates when the ball moves to one end of the tube.

 Mini Reed

Activates when a magnet moves near one end of the tube.

 Tracking

Activates when it senses an object within the calibrated distance.

 Light Blocking

Activates when something blocks the beam of light between the 2 parts of the component.

Why are a lot of sensors so similar to use?

A common feature of electronic components is their ability to conduct or block electricity

depending on outside influences. We use this as a way to measure our world.

3. The sensor will have an input voltage, and ground connection and a pin that will output a value that is either

the input or 0V.

4. The pins will be labeled, and may not always be in the same order, so hook them up the way they are

labelled even if it is slightly different to this guide. This guide is accurate for any sensor mounted on the

board pictured on the section-intro above.

By making these modular boards able to take any sensor essentially and have hobbyists simply

able to use it, regardless of having read the fact-sheet etc is amazing! Arduino is simply an

amazing system.

The pins on these modules are as follow:

 S: Signal/Sensor Out
This pin will output either 0v or +(Voltage in) which is directly related to the measurement of the sensor.

This pin is connected to any Digital Pin.

 +: Vs/ Positive supply (5V max)
The middle pin is for +5V or +3.3V. This will power the sensor and give a reference voltage for the output.

This will be connected to +5V or +3.3V on the Arduino.

 -: GND
The final leg is GND and allows a return path for current, completing the circuit. This should be connected to

your Arduino GND.

ϭϰ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Circuit:

IŶ this ĐoŶfiguratioŶ ǁe use ͞digitalRead;ϳͿ͟ to get the Digital ǀalue.

Example Code:
//----Begin Code (copy from here)----

/*

Set the variables below to the desired values, there are also predefined

functions at the bottom of the sketch you can use in your own projects

*/

//Includes:

//Variables:

int delayVal = 500; //Time to delay between reads.

int debug_values = 1; //1 = show values in serial / 0 = hide.

void setup() {

 // put your setup code here, to run once:

Serial.begin(9600); //Open serial connection

Serial.println("Analog Sensor Test Sketch...\nReading Sensor.");

}

void loop() {

// put your main code here, to run repeatedly:

while (digitalRead(7) == HIGH) { //While the pin is HIGH

 pinHigh(); //Trigger the pinHigh function. Put your code to be executed there.

 if (debug_values) { //If we have set the debug variable to 1 and the pin is HIGH

 Serial.println("PIN HIGH"); //Print the debug string "PIN HIGH" to the serial port

 }

ϭϱ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

 delay(delayVal);

}

pinLow();

 if (debug_values) { //If we have set the debug variable to 1 and the pin is HIGH

Serial.println("PIN LOW"); //Print the debug string "PIN HIGH" to the serial port

 }

//delay

delay(delayVal); //Delay for the period we defined

}

//Custom functions

void pinHigh() {

//All actions in this function will be performed every loop that the sensor value is HIGH

}

void pinLow() {

//All actions in this function will be performed every loop that the sensor value is LOW

}

//----End Code (copy to here)----

Expected Output:

In the example above I used a 3-pin mini reed (magnetic switch) Sensor. The reading changes as

I move a magnet near it. Have a play with different modules and take note if they respond to

stimuli the way you thought they would.

ϭϲ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 4

Type of pins used MIXED

MODULES – The Analog/Digital Sensor Module

ϭϳ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Which Sensors does this apply to?

This applies to any sensor that is mounted on this type of board, in the 37-in-1 kit these include:

 Flame Sensor

Detects the IR output of a naked flame.

 Linear Hall

Measures magnetic fields.

 Big Sound

A microphone, measures sound waves.

 Touch

A touch sensor. Detects human skin contact.

 Small Sound

A microphone, measures sound waves.

 Digital Temp

Measures temperature using a digital thermometer.

 Tracking

Essentially measures reflectivity, although people come up with very interesting uses for

these. This module has only 3 pins, essentially the analog out is removed. You have

digital + and gnd.

 Reed Switch

This is a switch that is activated by holding a magnet near it. Open or closed only.

Why are a lot of sensors mounted on the same type of board?

This board is commonly found with analog sensors, as it gives them analog or digital output as

required. They can be used in a few ways.

5. You can read either the digital HIGH or LOW to determine if the value is above a threshold. This is an

example of using it as a digital module.

6. You can read the voltage on the analog out pin to get the actual value from the sensor. This is an example of

using it as an analog module.

7. Finally, you could set the Arduino to log the data, but only if the value is above or below the threshold. This

is extremely handy.

By making these modular boards able to take any sensor essentially and turn it into a digital

AND analog sensor without any major design work is amazing, and lots of companies took

advantage of the design and released their own. The board also features a power LED and a

status LED. The status LED shows if the digital output is triggered yet or not. This is extremely

useful in debugging and setting thresholds.

ϭϴ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

The pins on these modules are as follow:

 AO: Analog Out
This pin will output a voltage between 0v and + which is directly proportionate to the measurement of the

sensor. This pin is connected to an analog in.

 G: Ground
This pin is ground, or 0V. This Pin is connected to the Arduino ground.

 +: Positive Supply
This pin is the positive supply for the module. We generally use 5 volts but there are other logic levels such

as the common 3.3v. The analog out will be between 0v and this voltage.

 DO: Digital Out
This pin is connected through the IC on the board and will output a HIGH or LOW depending on the state of

the module. We adjust the blue variable resistor to change the trigger level of this.

Example Circuit:

IŶ this ĐoŶfiguratioŶ ǁe use ͞aŶalogRead;AϬͿ͟ to get the aŶalog ǀalue, aŶd to get the digital
ǀalue ǁe do a ͞digitalRead;ϳͿ͟. Reŵeŵďer to geŶtlǇ turŶ the sĐreǁ iŶ the top of the ďlue
variable resistor to adjust the sensitivity of the digital output.

ϭϵ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Code:
//----Begin Code (copy from here)----

/*

Modify these variables to change parameters.

At the bottom of the code there are functions that are activated based on the sensor readings.

Add your own code inside these functions if you wish to use this code as a starting point.

The code is well-commented, so you should be able to follow easily.

----By Tyson Popynick 2016 - Free to modify or use unrestricted without credit or remuneration. ----

*/

//Variables:

int debug_showDigital = 0; //Show digital result in serial output?

int debug_showAnalog = 1; //Show analog result in serial output?

int timeDelay = 500; //Time to wait between readings. 1000 = 1 second.

int thresholdVal = 500; //Threshold level for triggers

void setup() {

 // put your setup code here, to run once:

Serial.begin(9600); //Start serial communication with the Arduino

Serial.println("Arduino Analog/Digital module sketch...\nSerial Started."); //The arduino sends this through the serial monitor to

show it is ready.

pinMode(7, INPUT); //Set the digital pin to input. Analog pins are automatically input.

}

void loop() {

//Read the sensor and store the values.

 int digitalVal = digitalRead(7); //Read Digital pin and store result

 int analogVal = analogRead(A0); //Read analog pin and store result

//Trigger any relevant functions

if (digitalVal == HIGH) { //Digital result = 1

 highTrigger();

}

if (digitalVal == LOW) { //Digital result = 0

 lowTrigger();

}

if (analogVal >= thresholdVal) { //Value above or equal to threshold

 analogHigh(analogVal);

}

if (analogVal < thresholdVal) { //value lower than threshold

 analogLow(analogVal);

}

//Debug output

if (debug_showDigital) { //If the debug_showDigital variable is set to 1 output data to serial.

 Serial.print("Digital Result: ");

 Serial.print(digitalVal);

 if (debug_showAnalog) {

 Serial.print(" ");

 }

 else {

 Serial.print("\n");

 }

}

if (debug_showAnalog) { //If the debug_showAnalog variable is set to 1 output data to serial.

 Serial.print("Analog Result: ");

 Serial.println(analogVal);

}

//Delay

delay(timeDelay); //Wait for specified period, then repeat.

}

//Custom Functions

void highTrigger() { //Code inside this function is run if the sensor is HIGH or "triggered"

}

void lowtrigger() { //Code here is run if the sensor is LOW or "not triggered"

ϮϬ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

}

void analogHigh(int value) {

//The code in here will be run if the analog result is higher than the threshold you set in the variable section at the top of this code

}

void analogLow(int value) {

//The code in here will be run if the analog result is higher than the threshold you set in the variable section at the top of this code

}

//----End Code (copy to here)----

Expected Output:

In the example above I used a Analog/Digital Sensor. The reading changes as I light a flame near

it. Have a play with different modules and take note if they respond to stimuli the way you

thought they would.

Ϯϭ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 3

Type of pins used DIGITAL

MODULES – Button Module

ϮϮ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

How hard could it be to use a button?

Surprisingly, buttons are not as simple as they would seem in a digital circuit like this. If we just

read the raw button data we will get multiple press events because the Arduino checks the

button faster than we can let it go.

How do we fix that?

Essentially we simply store the last time we had a button press, if there has been a minimum of

x mS since then, we can process the button data...otherwise it is not a clean press. This is called

debouncing.

Example Circuit:

Example Code:
//----Begin Code (copy from here)----

//Includes:

//Variables:

int debounceMe = 1; //Change this to a 0 to see what its like without the debouncing

int lastState = 0; //store the previous button state so we know when the button has been pushed and released.

int lastDebounce = 0; //Store the time we last triggered

int debounceDelay = 100; //min time between presses

int buttonState = 0; //store the state of the button

void setup() {

 // put your setup code here, to run once:

Ϯϯ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

 pinMode(7, INPUT);

 Serial.begin(9600);

 Serial.println("Button Debounce demo.\nPlease Press the button to see the input.");

}

void loop() {

//Read button and store result

lastState = buttonState;

buttonState = digitalRead(7);

if (debounceMe == 0) { //If debouncing is not enabled

 if (buttonState == 1) {

Serial.println("Button Released"); //Just send the raw data to the serial window

 }

 else {

 Serial.println("Button Pressed"); //Just send the raw data to the serial window

 }

}

else { //If debouncing is enabled

 if (buttonState == 0 && (lastDebounce + debounceDelay) <= millis() && lastState == 1) { //if the button is pressed & it has been

longer than the delay & the button was previously not held in

 Serial.println("Debounced press."); //success, this is a debounced press

 lastDebounce = millis(); //reset the last debounce timer so we know when to trigger again

 cleanPress(); //trigger our function to perform our actions.

}

}

}

//Custom Functions

void cleanPress() {

 //This is triggered when a clean button press is detected. Place your code to execute on a clean press here.

}

//----End Code (copy to here)----

Expected Output:

You should see the temperature regularly print in the serial output window. This sensor is very

accurate also.

Ϯϰ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 2

Type of pins used DIGITAL

MODULES – Buzzer Module

Ϯϱ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

What is a Buzzer?

There are a few types of buzzers in the wild, there is the Active type and the Passive type.

 Active

This type of buzzer will contain its own oscillator, which means you simply need to

provide it with 5V and it will make a sound. The oscillator will turn the input voltage off

and on very fast, producing a tone. The pitch can be varied with PWM.

 Passive

This type of buzzer has no oscillator, and if you apply a DC current it will simply make a

click sound as the diaphragm moves to its limit and stays there. If you apply a PWM

signal it will make a sound, because PWM turns the supply on and off in a similar way to

an oscillator.

What is it useful for?

Buzzers are very useful to alert the user to events, and the passive buzzers are really just small

speakers. Piezoelectric speakers are also similar, and apart from the specifications, normal

speakers are controlled the same way. Of course, if you want to hear meaningful sound you

should purchase a sound module. Aus electronics direct sell a range of modules, including one

that can record and play back sounds!

Why are there 3 pins on the module board, but we are only using 2 of

them?

We only need 2 pins for a buzzer or speaker, however the module boards have 3 pins. The

middle pin is not connected in this case. S is +5V and – is GND.

http://www.auselectronicsdirect.com.au/

Ϯϲ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Circuit:

Example Code:
//----Begin Code (copy from here)----

//Includes:

//Variables:

delayTime = 500; //Time to play each pitch for. 1000 = 1 second.

void setup() {

 // put your setup code here, to run once:

 pinMode(7, OUTPUT); //Rotary Encoder pin CLK

 Serial.begin(9600);

 Serial.println("Buzzer demo by Tyson Popynick, please freely edit and use this code for any

purpose.\nprot3us1@gmail.com\n\nNOTE: Some pitches may be quite loud.");

}

void loop() {

int PWM = random(0,255);

analogWrite(7, PWM);

delay(delayTime);

}

//----End Code (copy to here)----

Ϯϳ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Expected Output:

Ϯϴ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 3

Type of pins used DIGITAL

MODULES – 18B20 Digital Temp Module

Ϯϵ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

How is this different to the other TEMP sensors?

The other sensors are fairly simple analog components, their value changes based on

temperature. This sensor is digital, it has a unique serial number printed on it, and can be

addressed using this (or other methods). You can change settings such as precision etc on the

device using the libraries also. We will not cover that in this guide, however you could google

searĐh for ͞ϭϴBϮϬ settiŶgs ArduiŶo͟ aŶd fiŶd good iŶfo.

Why is it better?

1Wire means we can use a massive amount of these sensors on 1 pin of the ArduiŶo…We Đould
theoretically attach 100 of them to the Arduino, and check each in sequence..we would only

have used a single pin on the Arduino, this is incredible. There are other great features too,

however we will move along.

Example Circuit:

Example Code:
//----Begin Code (copy from here)----

//Includes:

#include <OneWire.h> //includes the functions needed to communicate with the 1-wire protocol

#include <DallasTemperature.h> //includes conversion functions from F to C etc, as well as the actual code to talk to the sensor.

//Variables:

OneWire oneWire(7); //Set the One Wire Data bus on pin 7.

DallasTemperature sensor(&oneWire); //This is passing a reference to the sensor object. This isnt commonly needed.

ϯϬ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

void setup() {

 // put your setup code here, to run once:

Serial.begin(9600);

Serial.println("Communicating with the temperature sensor via 1-wire protocol. \nFetching data...");

sensor.begin(); //Begin talking to the sensor

}

void loop() {

 // put your main code here, to run repeatedly:

sensor.requestTemperatures(); //Request temperatures from the sensor

Serial.print("Temp: "); //print "Temp: "

Serial.print(sensor.getTempCByIndex(0)); //populate the temperature reading.

Serial.println("c"); //print "Temp: "

}

//----End Code (copy to here)----

Expected Output:

You should see the temperature regularly print in the serial output window. This sensor is very

accurate also.

ϯϭ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 3

Type of pins used ANALOG

MODULES – The Heartbeat Detector Module

ϯϮ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

What is the active component in this module?

This module is built around an IR LED and an IR receiver. The IR led shines a certain wavelength

of light through your finger. Our skin allows IR to pass through, but our blood looks very

different to an IR sensor when it has oxygen present vs no oxygen present. In this way, we can

sense when the heart beats by watching for the changes in opacity.

The sensor takes care of most of the hard part. We need to shield as much light from the sensor

as we can for it to work properly. I wrapped mine in electrical tape, however you can use

cardboard, paper, plastic or any other material that will stop external light interfering with the

sensor.

Example Circuit Layout:

ϯϯ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Circuit Code:
//----Begin Code (copy from here)----

//Includes:

//Variables:

double a = 0.75; //Alpha

double c = 0.0; //Difference

int period = 20; //Delay period

void setup() {

 // put your setup code here, to run once:

Serial.begin(9600);

pinMode(13, OUTPUT);

}

void loop() {

 // put your main code here, to run repeatedly:

static double oldVal = 0;

static double oldC = 0;

int rawVal = analogRead(A0);

double val = a*oldVal+(1-a)*rawVal;

c = val - oldVal;

int temp = (c<0.0&&oldC>0.0);

digitalWrite(13, temp);

if (temp) {

Serial.println("Beat.");

}

else {

 Serial.print(".");

}

oldVal = val;

oldC = c;

delay(period);

}

Expected Output:

The Đode shoǁs aŶ output iŶ Ϯ states, oŶe state outputs ͞.͟, the other outputs ͞BEAT͟. OŶ a
period there is no beat detected, there will be a succession of periods until a beat is detected,

then the output changes to BEAT. In this way you can see patterns easily by looking at the line

length in serial output as shown to the right.

ϯϰ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

ϯϱ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 3

Type of pins used DIGITAL

MODULES – IR Receiver and Transmitter Module

ϯϲ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

What is an IR Receiver and Transmitter sensor?

The IR receiver module will accept and decode IR remote control signals so we can tell which

button has been pressed on a remote.

The transmitter is an IR LED, which is able to be pulsed at the correct frequencies to send

commands as if it WAS a TV remote. For the purpose of this demo, I will show you HOW to

seŶd IR data, aŶd HOW to reĐeiǀe it…hoǁeǀer as there are ŵaŶǇ protoĐols aǀailaďle Ǉou ǁill
have to research the type of receiver you are trying to communicate with.

What is it useful for?

We can use remote controls as inputs using the receiver and we can make our own remotes

with the IR LED!

Install the library:

Folloǁ the iŶstruĐtioŶs iŶ the liďrarǇ iŶstallatioŶ seĐtioŶ, aŶd iŶstall the folloǁiŶg liďrarǇ. DoŶ’t
forget to include the library once you have installed it! You will need to delete the following

folder from your Arduino directory:

C:\Program Files (x86)\Arduino\libraries\RobotIRremote

This library interferes with the IR remote library, and if you need it in the future you can simply

get it again through the manager.

For this portion of the guide I will include 2 separate diagrams and code. One for the transmitter

and one for the receiver. You can combine them or keep them separate depending on your

project!

ϯϳ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Circuit (receiver):

Example Code(receiver):
//----Begin Code (copy from here)----

#include <IRremote.h> //Note you will need to delete a built in library that comes with the arduino IDE that has a conflict with this

library.

 //Please delete the ir robot library.

//Variables:

IRrecv irrecv(7); //Set up the IR Reciever, call it irrecv and attach it to the correct pin

decode_results results; //Set up a variable to hold the results

void setup()

{

// put your setup code here, to run once:

Serial.begin(9600);

irrecv.enableIRIn(); // Start the receiver

}

void loop() {

// put your main code here, to run repeatedly:

if (irrecv.decode(&results)) {

String tmp = (String)results.value; //Read and store the incoming code from the IR receiver

if (tmp == "4294967295") //This value tells the Arduino that the previous button is still active.

ϯϴ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

{

Serial.println("Button still active."); //Report to the serial monitor the last button was still held down

}

else {

Serial.println(results.value, HEX); //A new button has been pressed with the value shown.

}

irrecv.resume(); // Receive the next value

}

}

//----End Code (copy to here)----

ϯϵ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Expected Output(receiver):

Example Circuit (transmitter):

ϰϬ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Code(transmitter):

//----Begin Code (copy from here)----

//Includes:

#include <IRremote.h>

//Variables:

IRsend irsend;

void setup()

{

 Serial.begin(9600);

}

void loop() {

 irsend.sendSony(0xa90, 12); //Code to send. You will need to use the receiver to collect codes

 Serial.println("Sent Code.."); //In case you want to see when the pulses are sent

 digitalWrite(13, HIGH); //Also light the LED connected to pin 13 on the arduino board

 delay(250); //Small delay to allow the LED to flicker

 digitalWrite(13, LOW); //turn the LED off

 delay(5000); //5 second delay between each send

}

//----End Code (copy to here)----

Expected Output(transmitter):

Once you have collected the codes to send by aiming your remote at the receiver and recording

them, you can send them. You should see the same function performed by the device when the

ArduiŶo seŶds the sigŶal…

ϰϭ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

MODULES – The JoyStick Module

ϰϮ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

What is the active component in this module?

This module is built around 2 potentiometers and a tactile button. A voltage is passed in to each

potentiometer, which then outputs a value that is directly related to the position of the stick.

We can then read these values and use them to control our projects. The button will need to be

de-bounced as always to prevent multiple readings.

Example Circuit Layout:

ϰϯ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Circuit Code:
//----Begin Code (copy from here)----

/*

Joystick module example code created by Tyson Popynick (prot3us1@gmail.com) for Aus Electronics Direct.

Outputs are found at the bottom of the sketch, dead zone, null zone and de-bounce time can be set by user.

Debug output verbosity can be set by user.

Gives the following outputs:

Button clicked

Button held + duration

Direction moved + distance moved

*/

//Includes:

//Variables:

//Non changeable variables:

int joyInXPin = A0; //X-Axis input pin

int joyInYPin = A1; //Y-Axis input pin

int joyInButton = 7; //Button input pin

int debounceState = 0; //Variable to store the debounce state

int isHeld = 0; //Variable to store the last debounce state

unsigned long lastDebounce = 0; //Variable to store the last time the button was pressed

int valX = 0; //Variable to store the value of the X-axis in

int valY = 0; //Variable to store the value of the Y-axis in

int lastX = 0; //Variable to hold the last X value

int lastY = 0; //Varialble to hold the last Y value

//Changeable Variables, edit the values below to tweak operation.

unsigned long debounceTime = 100; //Minimum time to wait between button state changes

int DEAD_ZONE = 5; //Joystick dead zone, gives a tiny null area in the middle of the stick to stop ghost values.

int nullX = 500; //average output of X axis at center

int nullY = 528; //average output of Y axis at center

//debug settings

int debug_rawXY = 0; //Should we output raw X/Y Data to serial? (1 = Show / 0 = hide)

int debug_rawButton = 0; //Should we output raw button Data to serial? (1 = Show / 0 = hide)

int debug_processedButton = 1; //Should we output processed button Data to serial? (1 = Show / 0 = hide)

int debug_processedJoystick = 1; //Should we output processed joystick data to serial? (1 = show / 0 = hide)

void setup() {

// put your setup code here, to run once:

Serial.begin(9600);

}

void loop() {

 // put your main code here, to run repeatedly:

 //Joystick input

 lastX = valX;

 lastY = valY;

 valX = analogRead(joyInXPin);

 valY = analogRead(joyInYPin);

 if (valX > nullX && (valX - nullX) >= DEAD_ZONE) {

 //Up

 joyUp(valX - nullX);

 }

 if (valX < nullX && (nullX - valX) >= DEAD_ZONE) {

 //Down

 joyDown(nullX - valX);

 }

 if (valY < nullY && (nullY - valY) >= DEAD_ZONE) {

 //Left

 joyLeft(nullY - valY);

 }

 if (valY > nullY && (valY - nullY) >= DEAD_ZONE) {

 //Right

 joyRight(valY - nullY);

 }

 //Print the values to the Serial Output if we have the debug variable set to 1

ϰϰ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

 if (debug_rawXY == 1) {

 Serial.print("X Axis: ");

 Serial.print(valX);

 Serial.print(" Y Axis: ");

 Serial.println(valY);

 }

 //Button input

 if (debounceState == 1) {

 if ((millis() - lastDebounce) >= debounceTime) {

 if (digitalRead(joyInButton) == HIGH && isHeld == 0) {

 //Button Released?

 if (debug_rawButton == 1) {

 Serial.println("Button Clicked with no hold.");

 }

 debounceState = 0;

 buttonClicked();

 }

 if (digitalRead(joyInButton) == HIGH && isHeld == 1) {

 //Button Released?

 if (debug_rawButton == 1) {

 Serial.print("Button Released after holding for: ");

 Serial.print(millis() - lastDebounce);

 Serial.println(" mS.");

 }

 debounceState = 0;

 isHeld = 0;

 buttonReleased(millis() - lastDebounce);

 }

 if (digitalRead(joyInButton) == LOW) {

 //Button still pressed??

 isHeld = 1;

 if (debug_rawButton == 1) {

 Serial.print("Button held for: ");

 Serial.println(millis() - lastDebounce);

 }

 }

 }

 }

 if (debounceState == 0) {

 if (digitalRead(joyInButton) == LOW) {

 //Button pressed?

 debounceState = 1;

 lastDebounce = millis();

 }

 }

} //Loop end

//--

/*

The sections below all contain an area that looks like this:

//Actions to perform when this is triggered

//End actions to perform

 Feel free to add any actions in between those lines, that you would like to perform when that particular event

is triggered.

*/

//--

void buttonClicked() {

 //This is called when the button is clicked without holding.

 if (debug_processedButton == 1) {

 Serial.println("Button Click event fired.");

 }

 //Actions to perform when this is triggered

 //End actions to perform

}

void buttonReleased(int lengthHeld) {

 //This is called when the button is released after holding. lengthHeld contains duration in mS.

 if (debug_processedButton == 1) {

ϰϱ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

 Serial.print("Button Held event fired, length of hold was: ");

 Serial.print(lengthHeld);

 Serial.println(" Milliseconds.");

 }

 //Actions to perform when this is triggered

 //End actions to perform

}

bool buttonHeld() {

 //This is called to check if the button is still being held. True or 1 if its held, False or 0 if not.

 if (isHeld == 1) {

 return 1;

 }

 else {

 return 0;

 }

 //Actions to perform when this is triggered

 //End actions to perform

}

void joyUp(int moveAmt) { //Called when the joystick is moved "upwards", with the value stored in moveAmt

 moveAmt = constrain(moveAmt, 0, 495);

 if (debug_processedJoystick == 1) {

 Serial.print("Joystick moved Up.");

 Serial.println(moveAmt);

 }

 //Actions to perform when this is triggered

 //End actions to perform

}

void joyDown(int moveAmt) { //Called when the joystick is moved "downwards", with the value stored in moveAmt

 moveAmt = constrain(moveAmt, 0, 495);

 if (debug_processedJoystick == 1) {

 Serial.print("Joystick moved Down.");

 Serial.println(moveAmt);

 }

 //Actions to perform when this is triggered

 //End actions to perform

}

void joyLeft(int moveAmt) { //Called when the joystick is moved "left", with the value stored in moveAmt

 moveAmt = constrain(moveAmt, 0, 495);

 if (debug_processedJoystick == 1) {

 Serial.print("Joystick moved Left.");

 Serial.println(moveAmt);

 }

 //Actions to perform when this is triggered

 //End actions to perform

}

void joyRight(int moveAmt) { //Called when the joystick is moved "right", with the value stored in moveAmt

 moveAmt = constrain(moveAmt, 0, 495);

 if (debug_processedJoystick == 1) {

 Serial.print("Joystick moved Right.");

 Serial.println(moveAmt);

 }

 //Actions to perform when this is triggered

 //End actions to perform

}

//----End Code (copy to here)----

Expected Output:

The code provides output to debug the module, as well as the ability to be easily modified to

perform any actions the user wants based on input.

ϰϲ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

ϰϳ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 3

Type of pins used DIGITAL

MODULES – Laser Module

ϰϴ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Is this a REAL LASER?

This is a real laser diode, the kind you get in pointers and keychains etc. It will not cause

permanent eye damage, however it can dazzle and cause washout for a fair period of time,

doŶ’t look into the beam and try to avoid it reflecting into your eye for any lengthy periods of

time (> 1 sec).

Why would I need a LASER?

There are multiple uses, the simplest being a laser tripwire system. Use the LASER emitter,

shining onto an LDR (photoresistor), when the light level drops rapidly and significantly

something broke the beam of light, trigger the alarm.

You can also make laser microphones etc with these modules, they will not cut however.

Example Circuit:

Example Code:
//----Begin Code (copy from here)----

//Includes:

#include <math.h> //contains common math functions

//Variables:

int delayTime = 1000; //Delay time. 1000 = 1 second.

void setup() {

ϰϵ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

 // put your setup code here, to run once:

pinMode(7, OUTPUT); //Set pin 7 to output.

}

void loop() {

 // put your main code here, to run repeatedly:

digitalWrite(7, HIGH); //Set pin 7 to HIGH

delay(delayTime); //wait defined time period before repeating

digitalWrite(7, LOW); //Set pin 7 to LOW

delay(delayTime); //wait defined time period before repeating

}

//----End Code (copy to here)----

Expected Output:

The LA“ER should turŶ oŶ, theŶ off repeatedlǇ. This shoǁs Ǉou hoǁ to ĐoŶtrol it…Ŷoǁ it is up to
you to make cool projects with it!

ϱϬ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

MODULES – The Magic Light Cup Module

ϱϭ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

What is the active component in this module?

This module is a red LED paired with a mercury tilt switch. The components are discrete, that is

– they share a power connection, but do not influence each other without the Arduino.

Essentially this module was made for a very specific purpose – a toy in China where you have 2

Đups, aŶd ǁheŶ Ǉou tilt oŶe it ͞eŵpties͟ iŶto the other.

Essentially it is supposed to be similar to pouring the light from one cup to the other. The cup

being the LED.

In reality, we simply check if the tilt switch has changed orientation. If it has we increase

brightness from 1 LED to the other. We then reverse the process when it is tilted the other way.

What we get is basically 2 LEDs controlled by tilt sensors. I only use one of the tilt sensors, you

could use both if you wish.

When the tilt sensor changes position LED A begins decreasing brightness, while LED B increases

brightness. That is the whole module.

Example Circuit Layout:

ϱϮ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Circuit Code:
//----Begin Code (copy from here)----

//Includes:

//Variables:

int light1Val = 0;

int light1State = 0;

int merc1Val = 0;

int merc1LastVal = 0;

int light2Val = 0;

void setup() {

 // put your setup code here, to run once:

Serial.begin(9600);

pinMode(2, INPUT);

pinMode(3, OUTPUT);

}

void loop() {

 // put your main code here, to run repeatedly:

merc1Val = digitalRead(2);

if (merc1Val == 1 && merc1LastVal == 0) {

 light1Val -= light1Val / 8;

 light2Val += light2Val / 8;

 light1State = 1;

 merc1LastVal = 1;

}

if (merc1Val == 0 && merc1LastVal == 1) {

 light1Val += light1Val / 8;

 light2Val -= light2Val / 8;

 light1State = 0;

 merc1LastVal = 0;

}

if (light1State) {

 light1Val--;

 light1Val = constrain(light1Val, 0, 255);

 light2Val++;

 light2Val = constrain(light2Val, 0, 255);

 analogWrite(3, light1Val);

 analogWrite(5, light2Val);

}

else {

 light1Val++;

 light1Val = constrain(light1Val, 0, 255);

 light2Val--;

 light2Val = constrain(light2Val, 0, 255);

 analogWrite(3, light1Val);

 analogWrite(5, light2Val);

}

}

//----End Code (copy to here)----

Expected Output:

The output of this project is not actually text-based. You should see one LED get brighter as the

other dims. Tilt the active module the other way to see them reverse. Set it up in plastic cups so

the light seeŵs to ͞fill͟ theŵ.

This module has a specific use which makes it difficult to use in your own projects. Remember

you can access the LED and mercury switch separately, they may be more useful like that than

they are together.

ϱϯ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 3

Type of pins used DIGITAL

MODULES – Multi-LED Packages Module

ϱϰ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Which LEDs does this apply to?

This part of the guide applies to any MULTI-LED PACKAGES Module.

In the 37-in-1 kit this includes:

 7 color flash

Flashes through 7 colors, then fades between them. You simply apply 5v. This is

a 2 terminal component.

 Two-color (Smaller)

Pins as follow:

S = + (positive)

Mid = - (Yellow Turns on)

 - = - (Orange turns on)

 Two-color (Larger)

Should be similar to above, unfortunately mine was DOA.

7-color Flash:

Although it is Ŷot eǆaĐtlǇ like the others ǁe iŶĐluded it here seeiŶg as it doesŶ’t fit aŶǇǁhere
else. Simply attach GND to the – pin, and +5V to the S pin, and this module will automatically

cycle through 7 colors, then slowly fade between them.

What would this be useful for?
With these LED packages we can wire them in such a way that the Arduino can pull either pin LOW or HIGH in order

to turn on the appropriate LED. These are not as useful now as they once were, seeing as they take 2 digital pins,

however you may find a use for them in projects!

We haǀe iŶĐluded the ϳ Đolor flash ŵodule iŶ this part of the guide as it doesŶ’t reallǇ fit iŶ aŶǇǁhere aŶd there is Ŷo
point making its own section.

ϱϱ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Circuit:

Example Code:
//----Begin Code (copy from here)----

//Includes:

//Variables:

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

 pinMode(7, OUTPUT);

 pinMode(6, OUTPUT);

}

void loop() {

 // put your main code here, to run repeatedly:

digitalWrite(7, HIGH);

digitalWrite(6, LOW);

Serial.println("Pin 7 High - Pin 6 Low");

delay(1000);

digitalWrite(6, HIGH);

digitalWrite(7, LOW);

Serial.println("Pin 6 High - Pin 7 Low");

delay(1000);

}

//----End Code (copy to here)----

ϱϲ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Expected Output:

The expected output is what will essentially appear as a flashing LED, it seems a bit plain, but it

is a result!

ϱϳ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 3

Type of pins used DIGITAL

MODULES – Relay Module

ϱϴ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

What IS a relay?

A relay is a device that is able to switch extremely high voltages and currents on or off with

relatively small voltage and current. In other words, you could use a relay to turn a 240V

appliance on, even though the Arduino is only running at 5 volts.

A relay is an electromechanical switch. That means it has physical metal contacts, literally strips

of metal that are on a rocker arm with a spring and a coil. When we apply power to the coil we

turn it into an electromagnet, which pulls the contacts to the other side. At this point the NO

(normally open) output becomes closed, and the NC (normally closed) output becomes open.

(Closed meaning it is conducting, and open meaning it is not conducting).

Why would I need a relay?

People use them for many reasons, from high voltage uses as I mentioned, home automation,

large amplifiers, large loads like motors and induction coils etc can be isolated with relays also.

Example Circuit:

ϱϵ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Code:
//----Begin Code (copy from here)----

//Includes:

//Variables:

int delayTime = 1500; //Delay time between switches

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

 Serial.println("DO NOT BE ALARMED BY THE LOUD CLICKING! THIS IS NORMAL.");

 pinMode(6, OUTPUT);

}

void loop() {

 // put your main code here, to run repeatedly:

digitalWrite(6, LOW);

Serial.println("Pin 6 Low - NC and GND/COM are 'connected'");

delay(delayTime);

digitalWrite(6, HIGH);

Serial.println("Pin 6 High = NO and GND/COM are 'connected'");

delay(delayTime);

}

//----End Code (copy to here)----

Expected Output:

The expected output is what will essentially appear as a flashing LED, it seems a bit plain, but it

is a result!

ϲϬ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 4

Type of pins used DIGITAL

MODULES – The RGB LED Module

ϲϭ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Which LEDs does this apply to?

This part of the guide applies to any RGB LED Module.

In the 37-in-1 kit this includes:

 RGB LED

This is a standard LED through-hole package on a module board.

 SMD RGB

This is a surface mount LED package mounted on a module board.

How can we make any color possible, with such a small component?

These RGB LED modules all contain 3 LEDs, a Red, a Blue and a Green. By varying the brightness

of each color using PWM, we can mix the colors and make any color we desire. We will be

making a sketch to run the LED through random colors, however once you have assembled the

ĐirĐuit Ǉou ĐaŶ alǁaǇs google ͞RGB LED ArduiŶo projeĐts͟ aŶd see ǁhat projeĐts other people
have made with them! Also feel free to mess around with the RGB values and see what you get!

As a bonus I decided to include some code to allow you to manually play with the colors. This is

explained later on.

The pins on these modules are as follow:

 B: Blue
This pin controls the blue LED in the module.

 R: Red
This pin controls the red LED in the module.

 G: Green
This pin controls the green LED in the module.

 -: GND
The final leg is GND and allows a return path for current, completing the circuit. This should be connected to

your Arduino GND.

ϲϮ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Circuit:

NOTE: This applies to the SMD module as well. The through hole module is pictured.

Example Code:
//----Begin Code (copy from here)----

//Includes:

//Variables:

int redPin = 6; //Pin that the red LED leg is connected to.

int greenPin = 5; //Pin that the green LED leg is connected to.

int bluePin = 9; //Pin that the blue LED leg is connected to.

int rVal = 0; //Variable to store the PWM value to run the red LED at.

int gVal = 0; //Variable to store the PWM value to run the red LED at.

int bVal = 0; //Variable to store the PWM value to run the red LED at.

String serialIn = ""; //Variable to store serial input from pc to arduino

int changed = 1; //variable to tell when the values have changed, so we dont flood the serial output with useless data.

int random_values = 0; //If set to 1 the channels will randomly change every period.

unsigned long lastRand = 0; //Store the last time we randomized.

int period = 1000; //period between randomizations. 1000 = 1 second.

void setup() {

 // put your setup code here, to run once:

Serial.begin(9600);

Serial.print("RGB LED Test Code (C) Tyson Popynick. Free to use without notification, renumeration or attribution. \n(Although you

are welcome to attribute if you wish).\n\nPlease do NOT look directly at the LED modules when they are powered, as they are

extremely bright!\nEnter the following commands into the box above, then press enter to send.\n\nOne letter per send

ϲϯ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

please.\n\nR = Large increase to red channel. \nr = Small increase to red channel.\nG = Large increase to green channel. \ng = Small

increase to green channel.\nB = Large increase to blue channel. \nb = Small increase to blue channel. \n! = Toggle randomised

lights\n'.' to clear all channels.\n\n");

pinMode(redPin, OUTPUT);

pinMode(greenPin, OUTPUT);

pinMode(bluePin, OUTPUT);

}

void loop() {

 // put your main code here, to run repeatedly:

//Serial In

if (Serial.available()) { //If there is a serial connection

 serialIn = Serial.readString(); //store any incoming (from the pc to arduino) data

 if (serialIn == "r") { //if we send the letter r (lowercase)

 rVal += 10; //Increase red value by 10

 }

 if (serialIn == "R") { //if we send the letter R (uppercase)

 rVal += 30; //Increase red value by 30

 }

 if (rVal >= 256) { //If the value goes above 255, reset to 0. (255 is max value for PWM)

 rVal = 0;

 }

 if (serialIn == "g") { //if we send the letter g (lowercase)

 gVal += 10; //Increase green value by 10

 }

 if (serialIn == "G") { //if we send the letter G (uppercase)

 gVal += 30; //Increase green value by 30

 }

 if (gVal >= 256) { //If the value goes above 255, reset to 0. (255 is max value for PWM)

 gVal = 0;

 }

 if (serialIn == "b") { //if we send the letter b (lowercase)

 bVal += 10; //Increase blue value by 10

 }

 if (serialIn == "B") { //if we send the letter B (uppercase)

 bVal += 30; //Increase blue value by 30

 }

 if (bVal >= 256) { //If the value goes above 255, reset to 0. (255 is max value for PWM)

 bVal = 0;

 }

 if (serialIn == ".") { //if we send a "."

 rVal = 0; //Clear all values

 gVal = 0; //Clear all values

 bVal = 0; //Clear all values

 }

 if (serialIn == "?") { //if we send a "?"

 Serial.print("RGB LED Test Code (C) Tyson Popynick. Free to use without notification, renumeration or attribution. \n(Although you

are welcome to attribute if you wish).\n\nPlease do NOT look directly at the LED modules when they are powered, as they are

extremely bright!\nEnter the following commands into the box above, then press enter to send.\n\nOne letter per send

please.\n\nR = Large increase to red channel. \nr = Small increase to red channel.\nG = Large increase to green channel. \ng = Small

increase to green channel.\nB = Large increase to blue channel. \nb = Small increase to blue channel. \n! = Toggle randomised

lights\n'.' to clear all channels.\n\n");

 }

 if (serialIn == "!") { //if we send a "!"

random_values = !random_values;

 }

 serialIn = "";

 changed = 1;

}

//loop continues

if (random_values && (lastRand + period) <= millis()) {

 rVal = random(0,255); //Randomize red channel

 gVal = random(0,255); //Randomize green channel

 bVal = random(0,255); //Randomize blue channel

 lastRand = millis();

 changed = 1;

ϲϰ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

 Serial.println("Randomized! Send '!' to stop randomization or '?' for the command list.");

}

if (changed) {

Serial.print("Red: ");

Serial.print(rVal);

Serial.print(" Green: ");

Serial.print(gVal);

Serial.print(" Blue: ");

Serial.print(bVal);

Serial.print(" Randomize: ");

Serial.println(random_values);

changed = 0;

analogWrite(redPin, rVal);

analogWrite(greenPin, gVal);

analogWrite(bluePin, bVal);

}

}

//Custom functions

//----End Code (copy to here)----

Expected Output:

The expected output in this project is a practical demonstration. The serial console window will

give you instructions as to how to use it. Have a play! Double check you have all the pins correct,

then upload the code and enjoy!

ϲϱ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 5

Type of pins used DIGITAL

MODULES – Rotary Encoder Module

ϲϲ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

What is a rotary encoder?

A rotary encoder is a component which counts rotations. With a potentiometer, we can only

turn so far before the knob will not turn any further. A rotary encoder does not have this

problem, it can spin in either direction indefinitely. It can also be pushed in, functioning as a

button. We have covered buttons before so we will focus on the rotary encoder for this tutorial.

(essentially the SW pin is of course, just a normal button, treat it the same way as the button

module.

What is it useful for?

It is useful for using one knob for an entire setup rather than independent controls for volume,

pitch, balance etc for example.

Example Circuit:

ϲϳ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Code:
//----Begin Code (copy from here)----

//Includes:

//Variables:

int val = 1;

int lastVal = 0;

int pos = 0;

void setup() {

 // put your setup code here, to run once:

 pinMode(5, INPUT); //Rotary Encoder pin CLK

 pinMode(6, INPUT); //Rotary encoder pin DT

 Serial.begin(9600);

 Serial.println("Rotary Encoder demo by Tyson Popynick, please freely edit and use this code for any

purpose.\nprot3us1@gmail.com\n\nPlease try turning the shaft.");

}

void loop() {

 //read rotary encoder

 lastVal = val; //set lastVal to the old value

 val = digitalRead(6); //set val to the new value read from the rotary encoder

 if (val == 1 && lastVal == 0) { //if the new value and the old value are different the knob was turned

 if (digitalRead(5) == 1) { //if the CLK channel is HIGH we have turned the knob clockwise.

 pos++; //Increase the "position" variable for the output value measurement

 CW_Click(); //call our function, where our code is executed down below the loop

 }

 else { //If the CLK channel is LOW then we turned the knob counter-clockwise

 pos--; //Decrease pos counter

 CCW_Click(); //Execute counter-clockwise click function so our event can fire.

 }

 pos_Update(pos); //Regardless of the direction, call the pos_Update function with the pos value.

 //this way we can trigger our events regardless of whether we need a value or a direction.

 }

}

//Custom Functions

void CW_Click() { //Triggered when the control is rotated clockwise

 Serial.println("Clockwise Rotation trigger");

}

void CCW_Click() { //Triggered when the control is rotated counter clockwise

 Serial.println("Counter-Clockwise Rotation trigger");

}

void pos_Update(int pos) { //Triggered every time the value changes, regardless of direction.

 Serial.print("Position Update: ");

 Serial.println(pos);

}

//----End Code (copy to here)----

ϲϴ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Expected Output:

ϲϵ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 3

Type of pins used DIGITAL

MODULES – Temp & Humidity Module

ϳϬ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

What is a Temp & Humidity sensor?

This is a digital sensor that will report the temperature, humidity and heat index on request.

We will use a library to communicate via 1Wire with the sensor, and output the values!

What is it useful for?

You may want to monitor the weather, use it in an automation system for your heating or

cooling, or remotely monitor the environment. There are a wide range of uses for this handly

little sensor!

Install the library:

Folloǁ the iŶstruĐtioŶs iŶ the liďrarǇ iŶstallatioŶ seĐtioŶ, aŶd iŶstall the folloǁiŶg liďrarǇ. DoŶ’t
forget to include the library once you have installed it!

ϳϭ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Circuit:

Example Code:
//----Begin Code (copy from here)----

//Includes:

#include <DHT.h> //Please make sure you search for, and install the DHT11 library.

 //Refer to the section on installing libraries for assistance.

//Variables:

DHT dht(7, DHT11); //Initialize the object for the sensor. Pin 7 in this case, and a DHT11 sensor.

ϳϮ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

 Serial.println("Temp and Humidity (DHT11) demo by Tyson Popynick, please freely edit and use this code for any

purpose.\nprot3us1@gmail.com\n\n");

 dht.begin(); //Begin communication with sensor

}

void loop() {

float humidity = dht.readHumidity(); //Read and store the humidity from the sensor

float temperature = dht.readTemperature(); //Read and store the temperature from the sensor (Celcius)

if (isnan(humidity) || isnan(temperature)) { //isnan means is not a number. If the data is coming back corrupt this should catch it

 Serial.println("Error reading");

 return; //This will return to the start of the loop without executing the code below.

}

float heatIndex = dht.computeHeatIndex(temperature,humidity,false); //Read and store the heat index from the sensor

Serial.print("Humidity: ");

Serial.print(humidity);

Serial.print(" Temperature: ");

Serial.print(temperature);

Serial.print(" Heat Index: ");

Serial.println(heatIndex); //Print all the values to the serial monitor

delay(2000); //Wait 2 seconds so we arent scrolling the serial screen too fast.

}

//----End Code (copy to here)----

Expected Output:

ϳϯ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Voltage (Min-Max) 3-5V

of Pins used 3

Type of pins used DIGITAL

MODULES – Thermistor (Analog temp) Module

ϳϰ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

What IS a Thermistor (Analog temp) Sensor?

A thermistor is a special type of resistor which has a linear and rapid value change based on its

temperature. We can read the resistance changes and work out the temperature with some

clever math. Instead of spending an hour working the math out using the spec sheet etc, I have

used code found on the Arduino forums. This is standard and most people cut and paste code

for their first few projects, finally delving in when they feel confident.

Why would I need a Thermistor?

Sometimes you want to know the temperature of an enclosure or perhaps the ambient

temperature to automatically adjust values etc. The thermistor is a handy analog package. You

can also get digital temperature sensors that output similar values, and digital sensors that you

must communicate with using serial protocols. The thermistor is quick and easy, so long as you

have the math needed to convert the readings to a temperature!

Example Circuit:

NOTE: In this case, if you find the temperature seems to drop rather than climb when you hold

your finger on the sensor, you are in the same boat as me. The assembly crew have put my

sensor on the board backwards hehe. Simply swap the red and black wires around and it will be

fixed! It is a little amusing to me though, for a moment I thought I was sub-Zero!

ϳϱ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

Example Code:
//----Begin Code (copy from here)----

//Includes:

#include <math.h> //contains common math functions

//Variables:

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600); //Start serial

 Serial.println("Rather than reinvent the wheel I used code found at: ");

 Serial.println("http://forum.arduino.cc/index.php?topic=209133.0");

}

void loop() {

 // put your main code here, to run repeatedly:

Serial.print(Thermister(analogRead(A0))); //This is basically saying - first run the Thermister function, passing in the value from the

sensor, then print the returned value to the console

Serial.println("c"); //then print the c for celcius, and send a newline character (as denoted by the println rather than print

delay(500); //wait half a second before repeating

}

//custom functions

double Thermister(int RawADC) {

double Temp;

Temp = log(((10240000/RawADC) - 10000));

Temp = 1 / (0.001129148 + (0.000234125 + (0.0000000876741 * Temp * Temp))* Temp);

Temp = Temp - 273.15;// Convert Kelvin to Celcius

return Temp;

}

//----End Code (copy to here)----

Expected Output:

The expected output is the temperature displayed in the serial window! Touch the sensor with

your finger to heat it up and watch the reading rise, then allow it to cool in the air and watch it

fall. Blow on it and see if it cools faster!

ϳϲ 37 – in – 1 Sensor Kit

©Tyson Popynick 2016 for Aus Electronics Direct

The End

	Foreword
	What is a library?
	How do I find these libraries in order to install them?
	How do I access the library, once it is installed?
	Which Sensors does this apply to?
	Why are a lot of sensors so similar to use?
	Example Circuit:
	Example Code:
	Expected Output:
	Which Sensors does this apply to?
	Why are a lot of sensors so similar to use?
	Example Circuit:
	Example Code:
	Expected Output:
	Which Sensors does this apply to?
	Why are a lot of sensors mounted on the same type of board?
	Example Circuit:
	Example Code:
	Expected Output:
	How hard could it be to use a button?
	How do we fix that?
	Example Circuit:
	Example Code:
	Expected Output:
	What is a Buzzer?
	What is it useful for?
	Why are there 3 pins on the module board, but we are only using 2 of them?
	Example Code:
	Expected Output:
	How is this different to the other TEMP sensors?
	Why is it better?
	Example Circuit:
	Example Code:
	Expected Output:
	What is the active component in this module?
	Example Circuit Layout:
	Example Circuit Code:
	Expected Output:
	What is an IR Receiver and Transmitter sensor?
	What is it useful for?
	Install the library:
	Example Circuit (receiver):
	Example Code(receiver):
	Expected Output(receiver):
	Example Circuit (transmitter):
	Expected Output(transmitter):
	What is the active component in this module?
	Example Circuit Layout:
	Example Circuit Code:
	Expected Output:
	Is this a REAL LASER?
	Why would I need a LASER?
	Example Circuit:
	Example Code:
	Expected Output:
	What is the active component in this module?
	Example Circuit Layout:
	Example Circuit Code:
	Expected Output:
	Which LEDs does this apply to?
	7-color Flash:
	What would this be useful for?
	Example Circuit:
	Example Code:
	Expected Output:
	What IS a relay?
	Why would I need a relay?
	Example Circuit:
	Example Code:
	Expected Output:
	Which LEDs does this apply to?
	How can we make any color possible, with such a small component?
	Example Circuit:
	Example Code:
	Expected Output:
	What is a rotary encoder?
	What is it useful for?
	Example Circuit:
	Example Code:
	Expected Output:
	What is a Temp & Humidity sensor?
	What is it useful for?
	Install the library:
	Example Circuit:
	Example Code:
	Expected Output:
	What IS a Thermistor (Analog temp) Sensor?
	Why would I need a Thermistor?
	Example Circuit:
	Example Code:
	Expected Output:

