
Technical University of Crete, Greece

Department of Electronic and Computer Engineering

Forward and Inverse Kinematics

for the NAO Humanoid Robot

Nikolaos Kofinas

Thesis Committee

Assistant Professor Michail G. Lagoudakis (ECE)

Professor Minos Garofalakis (ECE)

Assistant Professor Aggelos Bletsas (ECE)

Chania, July 2012

http://www.tuc.gr
http://www.ece.tuc.gr

Nikolaos Kofinas 2 July 2012

Πολυτεχνειο Κρητης

Τμημα Ηλεκτρονικων Μηχανικων και Μηχανικων Υπολογιστων

Ευθεία και Αντίστροφη Κινηματική

για το Ανθρωποειδές Ρομπότ NAO

Νικόλαος Κοφινάς

Εξεταστική Επιτροπή

Επικ. Καθ. Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Καθ. Μίνως Γαροφαλάκης (ΗΜΜΥ)

Επικ. Καθ. ΄Αγγελος Μπλέτσας (ΗΜΜΥ)

Χανιά, Ιούλιος 2012

http://www.tuc.gr
http://www.ece.tuc.gr

Nikolaos Kofinas 4 July 2012

Abstract

Articulated robots with multiple degrees of freedom, such as humanoid robots, have

become popular research platforms in robotics and artificial intelligence. Such robots can

perform complex motions, including the balancing, walking, and kicking skills required

in the RoboCup robot soccer competition. The design of complex dynamic motions is

achievable only through the use of robot kinematics, which is an application of geometry

to the study of arbitrary robotic chains. This thesis studies the problems of forward

and inverse kinematics for the Aldebaran NAO humanoid robot and presents for the first

time a complete analytical solution to both problems with no approximations, including

an implementation of a software library for real-time execution. The forward kinematics

allow NAO developers to map any configuration of the robot from its own joint space

to the three-dimensional physical space, whereas the inverse kinematics provide closed-

form solutions to finding joint configurations that drive the end effectors of the robot to

desired points in the three-dimensional space. The proposed solution was made feasible

through a decomposition into five independent problems (head, two arms, two legs),

the use of the Denavit-Hartenberg method, and the analytical solution of a non-linear

system of equations. The main advantage of the proposed inverse kinematics compared

to existing numerical approaches is its accuracy, its efficiency, and the elimination of

singularities. The implemented NAO kinematics library, which additionally offers center-

of-mass calculation, is demonstrated in two motion design tasks: pointing to the ball and

basic balancing. The library has been integrated into the software architecture of the

RoboCup team “Kouretes” and is currently being used in various motion design problems,

such as dynamic balancing, trajectory following, dynamic kicking, and omnidirectional

walking.

Nikolaos Kofinas ii July 2012

Περίληψη

Τα αρθρωτά ρομπότ με πολλαπλούς βαθμούς ελευθερίας, όπως τα ανθρωποειδή ρομπότ,

έχουν γίνει δημοφιλείς πλατφόρμες έρευνας στη ρομποτική και την τεχνητή νοημοσύνη. Τα

εν λόγω ρομπότ μπορούν να εκτελέσουν σύνθετες κινήσεις, συμπεριλαμβανομένων και των

δεξιοτήτων ισορροπίας, βαδίσματος και λακτίσματος που απαιτούνται στον διαγωνισμό ρο-

μποτικού ποδοσφαίρου RoboCup. Ο σχεδιασμός πολύπλοκων δυναμικών κινήσεων μπορεί

να επιτευχθεί μόνο μέσω της χρήσης ρομποτικής κινηματικής, που είναι η εφαρμογή της

γεωμετρίας στη μελέτη αυθαίρετων ρομποτικών αλυσίδων. Η παρούσα διπλωματική εργασία

μελετά τα προβλήματα της ευθείας και αντίστροφης κινηματικής για το ανθρωποειδές ρομπότ

Aldebaran NAO και παρουσιάζει για πρώτη φορά μια πλήρη αναλυτική λύση και για τα δύο

προβλήματα χωρίς προσεγγίσεις, συμπεριλαμβανομένης μιας υλοποίησης βιβλιοθήκης λογι-

σμικού για εκτέλεση σε πραγματικό χρόνο. Η ευθεία κινηματική επιτρέπει στους προγραμ-

ματιστές του ΝΑΟ να απεικονίσουν οποιαδήποτε διάταξη του ρομπότ από τον χώρο των αρ-

θρώσεών του στον τρισδιάστατο φυσικό χώρο, ενώ η αντίστροφη κινηματική παρέχει λύσεις

κλειστής μορφής για την εξεύρεση διατάξεων των αρθρώσεων που οδηγούν τα άκρα του

ρομπότ σε επιθυμητά σημεία στον τρισδιάστατο χώρο. Η προτεινόμενη λύση κατέστη εφικτή

χάρη στην αποσύνθεση σε πέντε ανεξάρτητα προβλήματα (κεφάλι, δύο χέρια, δύο πόδια),

στη χρήση της μεθόδου Denavit-Hartenberg και στην αναλυτική επίλυση ενός μη-γραμμικού

συστήματος εξισώσεων. Το κύριο πλεονέκτημα της προτεινόμενης αντίστροφης κινηματικής

σε σύγκριση με υφιστάμενες αριθμητικές προσεγγίσεις είναι η ακρίβειά της, η αποδοτικότητά

της και η εξάλειψη των ιδιόμορφων περιπτώσεων. Η υλοποιημένη βιβλιοθήκη κινηματικής

για το ΝΑΟ, η οποία περιλαμβάνει και υπολογισμό του κέντρου μάζας, επιδεικνύεται σε δύο

προβλήματα σχεδιασμού κίνησης: κατάδειξη μπάλλας και βασική ισορροπία. Η βιβλιοθήκη

έχει ενσωματωθεί στην αρχιτεκτονική λογισμικού της ομάδας RoboCup «Κουρήτες» και

χρησιμοποιείται σε διάφορα προβλήματα σχεδιασμού κινήσεων, όπως δυναμική ισορροπία,

παρακολούθηση τροχιάς, δυναμικά λακτίσματα και πολυκατευθυντικό βάδισμα.

Nikolaos Kofinas iv July 2012

Acknowledgements

First of all, I would like to thank Manolis Orf (a.k.a. “re palikari”) for his help and his

great ideas as well as for the great fights we had.

Next, I would like to thank my advisor Michail G. Lagoudakis for his inspiration and the

trust that he showed in me.

Fanoula is the next person that I would like to thank ¨̂ . She helped me so much during

this difficult period and I am so lucky that she still talks to me.

Team Kouretes (N. Pav, A. Top, M. Kounoupidi, D. Janetatou, Orf, Iris), I can’t un-

derstand why you still talk to me after all the things we’ve been through together in

“ypoga”. After all, I like this team and our lab more than I had imagined; thank you for

your help and all the fun in the team.

To sum up, I would like to thank my friends with whom I had the greatest five years

of my life. N. Pavlakis (he paid five Euros for the second reference), E. Alimpertis, K.

Perros, and E. Soulas, thank you for everything!

Of course, I don’t have words to describe the help I received from my parents, so I ...

Nikolaos Kofinas vi July 2012

Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 RoboCup . 5

2.1.1 Standard Platform League . 5

2.1.2 Robocup SPL Team Kouretes . 6

2.2 Aldebaran NAO Humanoid Robot . 8

2.3 Robot Kinematics . 9

2.3.1 Forward Kinematics . 10

2.3.2 Inverse Kinematics . 10

2.4 Affine Transformations . 10

2.5 Denavit-Hartenberg (DH) Parameters . 14

2.6 Mathematica . 16

3 NAO Kinematics: The Problem 17

3.1 NAO Robot Specifications . 17

3.2 The Kinematics Problem for NAO . 22

3.2.1 The Forward Kinematics Problem for NAO 23

3.2.2 The Inverse Kinematics Problem for NAO 24

3.3 Related Work . 25

3.3.1 Aldebaran Robotics . 25

3.3.2 B-Human Inverse Kinematics Solution 26

3.3.3 QIAU Inverse Kinematics Solution 26

Nikolaos Kofinas vii July 2012

CONTENTS

4 NAO Kinematics: The Solution 27

4.1 Forward Kinematics for the NAO Robot 27

4.1.1 Forward Kinematics for the Head 30

4.1.2 Forward Kinematics for the Left Arm 30

4.1.3 Forward Kinematics for the Right Arm 31

4.1.4 Forward Kinematics for the Left Leg 32

4.1.5 Forward Kinematics for the Right Leg 32

4.1.6 Forward Kinematics for Combined Chains 33

4.1.7 Calculation of the Center Of Mass 34

4.2 Inverse Kinematics for the NAO Robot 35

4.2.1 Inverse Kinematics for the Head 37

4.2.2 Inverse Kinematics for the Left Arm 38

4.2.3 Inverse Kinematics for the Right Arm 40

4.2.4 Inverse Kinematics for the Left Leg 41

4.2.5 Inverse Kinematics for the Right Leg 46

4.3 Implementation . 48

4.3.1 KMat: Kouretes Math Library . 48

4.3.2 Nao Kinematics C++ Library . 48

5 NAO Kinematics: The Results 51

5.1 Real-Time Performance . 52

5.2 Locus of Problematic Inverse Kinematics 52

5.3 Demonstration I: Pointing to the Ball . 54

5.4 Demonstration II: Basic CoM Balancing 55

6 Conclusion 57

6.1 Future Work . 57

Nikolaos Kofinas viii July 2012

List of Figures

2.1 Standard Platform League at RoboCup 2012 (from www.botsport.tv) . 6

2.2 Team Kouretes at RoboCup 2012 in Mexico City 7

2.3 Aldebaran NAO v3.3 (Academic edition) components 8

2.4 Denavit-Hartenberg (DH) parameters: a, α, d, θ (from www.tekkotsu.org) 15

3.1 Aldebaran NAO v3.3 (Academic edition) kinematic chains and joints . . 18

3.2 NAO links and their sizes . 19

3.3 NAO head joints and their operational range 20

3.4 NAO arms joints and their operational range 20

3.5 NAO legs joints and their operational range 21

4.1 Base (torso) frame and zero position of the joints 28

4.2 Locus of leg configurations corresponding to non-unique solutions to θ6 . 44

5.1 Trajectories of motion in a subspace of the leg joints 53

5.2 Pointing to the ball with the NAO using forward and inverse kinematics . 54

5.3 Pointing to the ball at SPL Open Challenge Competition of RoboCup 2012 55

5.4 Basic balancing for the NAO using the projection of the center of mass . 56

Nikolaos Kofinas ix July 2012

www.botsport.tv
www.tekkotsu.org

LIST OF FIGURES

Nikolaos Kofinas x July 2012

List of Tables

3.1 Masses of links/joints (frames) of the NAO robot 22

4.1 DH parameters for the head chain of the NAO robot 30

4.2 DH parameters for the left arm chain of the NAO robot 31

4.3 DH parameters for the right arm chain of the NAO robot 32

4.4 DH parameters for the left leg chain of the NAO robot 33

4.5 DH parameters for the right leg chain of the NAO robot 33

5.1 On-board execution times of the NAO kinematics library 52

Nikolaos Kofinas xi July 2012

LIST OF TABLES

Nikolaos Kofinas xii July 2012

Chapter 1

Introduction

Articulated robots with multiple degrees of freedom, such as humanoid robots, have be-

come popular research platforms in robotics and artificial intelligence. Such robots can

perform complex motions, including balancing, walking, standing up, etc. A challenging

domain, where humanoid robots are called to demonstrate complex motion skills is the

RoboCup (robot soccer) competition [?], whereby teams of autonomous robots compete

against each other in various leagues. In this thesis we focus on the Aldebaran NAO

humanoid robot, which is used exclusively by all teams competing in the Standard Plat-

form League (SPL) of the RoboCup competition. NAO a mid-size humanoid robot with

21 degrees of freedom (independently-moving joints) divided in five kinematic chains (a

head, two arms, two legs). NAO is capable of performing various complex motions and,

in fact, many SPL teams have designed and implemented their own omni-directional walk

algorithms [?, ?], balancing methods [?], and kick engines [?] to be more competitive.

It is widely known that the design of complex dynamic motions is achievable only

through the use of robot kinematics, which is an application of geometry to the study of

arbitrary robotic chains [?]. Robot kinematics include forward and inverse kinematics.

The forward kinematics provide the means to map any configuration of the robot from

its own multi-dimensional joint space to the three-dimensional physical space in which

the robot operates, whereas the inverse kinematics provide the means to finding joint

configurations that drive the end effectors of the robot to desired points in the three-

dimensional space. It is easy to see why kinematics are required in any kind of complex

motion design. Stable walk gaits rely on the ability of the robot to follow planned

trajectories with its feet; this is not possible without some mechanism that allows the

Nikolaos Kofinas 1 July 2012

1. INTRODUCTION

robot to set its joints to angles that drive the feet to points along such trajectories,

an instance of inverse kinematics. Likewise, balancing methods rely on the ability to

calculate the center of mass of the robot, which is constantly changing as the robot moves;

finding the center of mass is made possible, only if the exact position and orientation of

each part of the robot in the three-dimensional space is known, an instance of forward

kinematics. It is also quite understandable that any kinematics computations must be

performed in real-time to be useful in dynamic motions.

1.1 Thesis Contribution

This thesis studies the problems of forward and inverse kinematics for the Aldebaran NAO

humanoid robot and contributes for the first time a complete analytical solution to both

problems with no approximations. In addition, it contributes an implementation of the

proposed NAO kinematics as a software library for real-time execution on the robot. This

work enables NAO software developers to make transformations between configurations

in the joint space and points in the three-dimensional physical space on-board in just

microseconds.

The proposed solution was made possible through a decomposition into five indepen-

dent problems (head, two arms, two legs), the use of the Denavit-Hartenberg method [?,

?], and the analytical solution of a non-linear system of equations. Existing methods

for NAO inverse kinematics either offer analytical solutions [?], but only under certain

simplification assumptions, or offer approximate numerical solutions [?], which are nev-

ertheless subject to singularities. The main advantage of the proposed inverse kinematics

compared to existing approaches is its accuracy, its efficiency, and the elimination of

assumptions and singularities.

This thesis additionally contributes two demonstrations of NAO kinematics: (a) a

pointing-to-the-ball task, whereby the robot tracks a ball in the field and uses forward

and inverse kinematics to point to the exact location of the ball with its stretched arm(s),

and (b) a basic balancing method, whereby the robot calculates its current center of mass

through the help of forward kinematics and drives one of its legs to the projection of the

center of mass on the floor using inverse kinematics to maintain balance. The imple-

mented NAO kinematics library has been integrated into the software architecture of the

RoboCup team “Kouretes” and is currently being used in various motion design problems,

Nikolaos Kofinas 2 July 2012

1.2 Thesis Outline

such as dynamic balancing, trajectory following, dynamic kicking, and omnidirectional

walking.

1.2 Thesis Outline

Chapter 2 describes the RoboCup competition, the Standard Platform League (SPL),

our SPL team Kouretes, and the Aldebaran NAO humanoid robot. Furthermore, it pro-

vides basic background information about generic robot kinematics, affine transformation

matrices, and the Denavit-Hartenberg (DH) parameters. In Chapter 3 we provide a com-

plete description of the NAO hardware and we define the problem of kinematics for the

NAO robot. Furthermore, we discuss the related work about forward and mainly inverse

kinematics for the NAO robot. In Chapter 4 we describe in detail our solutions to the

problems of forward and inverse kinematics for the NAO robot. Additionally, we explain

the implementation of kinematics and integration with our team’s code. In Chapter 5 we

present the real-time performance of our kinematics mechanism and a couple of scenarios

to demonstrate its effectiveness. Finally, in Chapter 6 we discuss the results of this thesis

and we compare it with other related approaches, pointing out at the same time possible

future research directions.

Nikolaos Kofinas 3 July 2012

1. INTRODUCTION

Nikolaos Kofinas 4 July 2012

Chapter 2

Background

2.1 RoboCup

The RoboCup competition was initially inspired by Hiroaki Kitano [?] in 1993 and his

idea eventually led to the establishment of the RoboCup Federation. The RoboCup

competition has a bold vision: “By the year 2050, to develop a team of fully autonomous

humanoid robots that can win against the human world soccer champions”. All the teams

participating in RoboCup have to find real-time solutions to some of the most difficult

problems in robotics (perception, cognition, action, coordination). All the divisions in

RoboCup (soccer, RoboCup@Home, RoboRescue, etc.) are designed so as to test the

proposed solutions by the various teams to the problems mentioned above. So far, the

researchers participating in RoboCup have made a lot of progress in solving real-world

problems that show up in the various RoboCup leagues within each division.

2.1.1 Standard Platform League

The Standard Platform League (SPL) is one of the many leagues in the soccer division of

RoboCup. In this league all the teams use the same robot, the Aldebaran NAO humanoid

robot, and they focus only on algorithm design and software development for this robot.

For this reason, the teams are prohibited to make any changes to the hardware of the

robot. The robots are completely autonomous and no human intervention from team

members is allowed during the games. The only interaction of the robots with the “outer

Nikolaos Kofinas 5 July 2012

2. BACKGROUND

Figure 2.1: Standard Platform League at RoboCup 2012 (from www.botsport.tv)

world” is the reception of data from the Game Controller, a computer that broadcasts

information about the state of the game (score, time, penalties, etc.).

Currently, the SPL games are conducted on a field with dimensions 4m×6m [?]. The

field consists of a green carpet marked with white lines and two yellow goals (Figure 2.1).

The appearance of the field is similar to a real soccer field, but it is scaled to the size of

the robots. The ball is an orange street hockey ball. Each team consists of four robots

and each robot carries a colored waist band (blue or pink) that distinguishes the teams.

The total game time is 20 minutes and is broken in two halves; each half lasts 10 minutes.

2.1.2 Robocup SPL Team Kouretes

Team Kouretes (www.kouretes.gr) is the RoboCup team of the Technical University of

Crete. The team was founded in 2006 and participates in the main RoboCup compe-

tition ever since in various leagues (Four-Legged, Standard Platform, MSRS, Webots),

as well as in various local RoboCup events (German Open, Mediterranean Open, Iran

Open, RC4EW, RomeCup) and RoboCup exhibitions (Athens Digital Week, Micropolis,

Schoolfest). In May 2010, the team hosted the 1st official SPL tournament in Greece (with

Nikolaos Kofinas 6 July 2012

www.botsport.tv
www.kouretes.gr

2.1 RoboCup

Figure 2.2: Team Kouretes at RoboCup 2012 in Mexico City

three invited teams) within the Hellenic Conference on Artificial Intelligence (SETN).

Distinctions of the team include: 2nd place in MSRS at RoboCup 2007; 3rd place in

SPL-Nao, 1st place in SPL-MSRS, among the top 8 teams in SPL-Webots at RoboCup

2008; 1st place in RomeCup 2009; 6th place in SPL-Webots at RoboCup 2009; 2nd

place in SPL at RC4EW 2010; and 2nd place in SPL Open Challenge Competition at

RoboCup 2011 (joint team Noxious-Kouretes).

The team has been developing its own (publicly-available) software for the Nao robots

since 2008. The team code repository includes a custom software architecture, a custom

communication framework, graphical tools for monitoring and behavior specification, and

modules for object recognition, state estimation, localization, obstacle avoidance, behav-

ior execution, team coordination. The members of the team are senior undergraduate

ECE students working on their diploma thesis on a RoboCup-related topic; 15 diploma

theses have been completed so far. Recently, the team participated in the RoboCup

German Open 2012 competition in Magdeburg, in RoboCup Iran Open 2012 in Tehran,

and in RoboCup 2012 in Mexico City (Figure 2.2). In the most recent RoboCup 2012

Nikolaos Kofinas 7 July 2012

2. BACKGROUND

Figure 2.3: Aldebaran NAO v3.3 (Academic edition) components

competition, the team succeeded to proceed to the second round-robin round and rank

among the top-16 SPL teams in the world.

2.2 Aldebaran NAO Humanoid Robot

NAO is an integrated, programmable, medium-sized humanoid robot developed by Alde-

baran Robotics in Paris, France [?]. Project NAO started in 2004. In August 2007 NAO

officially replaced Sony’s AIBO quadruped robot in the RoboCup SPL. In the past few

years NAO has evolved over several designs and several versions.

NAO (version V3.3) is a 58cm, 5kg humanoid robot (Figure 2.3). The NAO robot

carries a fully capable computer on-board with an x86 AMD Geode processor at 500 MHz,

256 MB SDRAM, and 2 GB flash memory running an Embedded Linux distribution. It is

powered by a 6-cell Lithium-Ion battery which provides about 30 minutes of continuous

operation and communicates with remote computers via an IEEE 802.11g wireless or a

wired ethernet link.

NAO RoboCup edition has 21 degrees of freedom; 2 in the head, 4 in each arm, 5

in each leg and 1 in the pelvis (there are two pelvis joints which are coupled together

Nikolaos Kofinas 8 July 2012

2.3 Robot Kinematics

on one servo and cannot move independently). NAO, also, features a variety of sensors.

Two cameras are mounted on the head in vertical alignment providing non-overlapping

views of the lower and distant frontal areas, but only one is active each time and the

view can be switched from one to the other almost instantaneously. Each camera is a

640× 480 VGA devise operating at 30fps. Four sonars (two emitters and two receivers)

on the chest allow NAO to sense obstacles in front of it. In addition, the NAO has a rich

inertial unit, with one 2-axis gyroscope and one 3-axis accelerometer, in the torso that

provides real-time information about its instantaneous body movements. Two bumpers

located at the tip of each foot are simple ON/OFF switches and can provide information

on collisions of the feet with obstacles. Finally, an array of force sensitive resistors on

each foot delivers feedback of the forces applied to the feet, while encoders on all servos

record the actual values of all joints at each time.

2.3 Robot Kinematics

A robot kinematic chain is an articulated manipulator that interacts with the environment

and is typically described as an assembly of robotic links connected by (rotary) joints. The

joints rotate and control the relative angular positioning of the links of the manipulator.

Not all combinations of joints’ positions in the chain are valid, because some combinations

lead to collisions between the links of the chain or with some fixed item of the environment,

such as the floor or a wall. All the valid combinations of joint values form the joint space.

The term degrees of freedom (DOF) refers to the number of joints in a kinematic chain;

clearly, more DOF imply more flexibility in the motion of the chain.

Robot kinematics is the application of geometry to the study of kinematic chains with

multiple degrees of freedom. More specifically, robot kinematics provide the transforma-

tion from the joint space, where the kinematic chains are defined, to the Cartesian space,

where the robot manipulator moves, and vice versa. Robot kinematics are quite useful,

because they can be used for planning and executing movements, as well as calculating

actuator forces and torques.

Nikolaos Kofinas 9 July 2012

2. BACKGROUND

2.3.1 Forward Kinematics

The joint space reveals very little information about the position and orientation of the

end effector of the kinematic chain. The forward kinematics define a mapping from the

joint space to the three-dimensional Cartesian space. Given a kinematic chain with m

joints and a set of joint values (θ1, θ2, . . . , θm), the forward kinematics can find the position

(px, py, pz) and the orientation (ax, ay, az) of the end effector of the kinematic chain in the

three-dimensional x-y-z space. Forward kinematics is a domain-independent problem and

can be solved for any simple or complex kinematic chain yielding a closed-form, analytical

solution.

2.3.2 Inverse Kinematics

Robot manipulators typically need to reach target points or follow trajectories in the

three-dimensional space. To make the end effector reach a point or follow a trajectory, one

has to specify appropriate values for the joints of the kinematic chain. The inverse kine-

matics define ways to go from the three-dimensional space to the joint space. In particu-

lar, the inverse kinematics define a relation between points in the three-dimensional space

(position (px, py, pz) and orientation (ax, ay, az)) and joint values/angles (θ1, θ2, . . . , θm)

in the joint space of a kinematic chain with m joints. The problem of inverse kinematics

is domain-dependent and every kinematic chain has a different solution. The solution to

the inverse kinematics problem can lead to an analytical, closed-form equation or to a

numerical, iterative approximation (e.g. with the Jacobian approximation method). As

the number of DOF increases, a point in the three-dimensional space may have more

than one matching points in the joint space. This multiplicity of solutions makes the

inverse kinematics a relation, not a mapping.

2.4 Affine Transformations

An affine transformation is a mapping that transforms points and vectors from one space

to another, in a way that preserves the ratios of distances. The source and target spaces

can be n-dimensional with n ≥ 2. The following are affine transformations: geometric

contraction, expansion, dilation, reflection, rotation, shear, similarity transformations,

spiral similarities, and translation. All the possible combinations of the above produce

Nikolaos Kofinas 10 July 2012

2.4 Affine Transformations

an affine transformation as well. The flexibility of affine transformations with respect to

object representation in different spaces, makes it a very useful tool in computer graphics.

For the purposes of this thesis we only use rotation and translation, so we will focus

only on these two types of affine transformation. Additionally, we are working in a three-

dimensional Cartesian work space and therefore all the definitions and examples from

now on will focus on this space.

Affine Transformation Matrix

An affine transformation matrix is a
(

(n+ 1) × (n+ 1)
)

matrix, where n is the num-

ber of dimensions in the space the transformation is defined on. In general, an affine

transformation matrix is a block matrix of the form:

T =

[
X Y[

0 · · · 0
]

1

]
where X is a (n× n) matrix, Y is a (n× 1) vector and the last line of T contains n− 1

zeros followed by a 1. If we want to apply the transformation, to a given point p =

(p1, p2, . . . , pn) in the n-dimensional space, we simply multiply the affine transformation

matrix with the column vector v = (p1, p2, . . . , pn, 1)>:

v′ =


p′1
...
p′n
1

 = Tv =

[
X Y[

0 · · · 0
]

1

]
p1
...
pn
1


For a point p = (px, py, pz) in the three-dimensional space, the transformation will be:

v′ =


p′x
p′y
p′z
1

 = Tv =


Xxx Xxy Xxz Yx
Xyx Xyy Xyz Yy
Xzx Xzy Xzz Yz

0 0 0 1



px
py
pz
1


The matrix that results from the multiplication of two affine transformation matrices T1

and T2 is still an affine transformation:

T = T1T2 =

[
X1 Y1[

0 · · · 0
]

1

] [
X2 Y2[

0 · · · 0
]

1

]
=

[
X1X2 X1Y2 + Y1[

0 · · · 0
]

1

]

Nikolaos Kofinas 11 July 2012

2. BACKGROUND

This property generalizes to the product of any number of affine transformation matrices:

T̂ = T1T2T3 · · ·Tk =

[
X̂ Ŷ[

0 · · · 0
]

1

]
An affine transformation matrix is invertible, if and only if X is invertible, and takes the

form:

T−1 =

[
X−1 −X−1Y[

0 · · · 0
]

1

]

Translation Matrix

Translation in a Cartesian space is a function that moves (translates) every point by

a fixed distance in a specified direction. We can describe a translation in the three-

dimensional space with a (4× 4) matrix of the following form:

A =


1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1


where dx, dy, and dz define the distance of translation along the x, y, and z axis respec-

tively. Apparently, the translation matrix is an affine transformation matrix with X = I.

Therefore, to move a point p = (px, py, pz) in the three-dimensional space by distances

(dx, dy, dz), we simply apply the transformation:

v′ =


p′x
p′y
p′z
1

 = Av =


1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1



px
py
pz
1


Rotation Matrix

Rotation in a Cartesian space is a function that rotates vectors by a fixed angle about

a specified direction. A rotation in the n-dimensional space is described as an (n × n)

orthogonal matrix R with determinant 1:

R> = R−1 RR> = R>R = I det(R) = 1

Nikolaos Kofinas 12 July 2012

2.4 Affine Transformations

In the three-dimensional Cartesian space there are three distinct rotation matrices, each

one of them performing a rotation of θx, θy, θz about the x, y, z axis respectively, assuming

a right-handed coordinate system:

Rx =

1 0 0
0 cos θx − sin θx
0 sin θx cos θx

 Ry =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 Rz =

cos θz − sin θz 0
sin θz cos θz 0

0 0 1


To rotate a vector defined by the end point p = (px, py, pz) about a specific axis, one can

simply multiply with the corresponding rotation matrix. To rotate the vector first about

the x axis and then about the y axis, one has to multiply with the corresponding rotation

matrices in the following order:

p′ =

p′xp′y
p′z

 = RyRxp =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

1 0 0
0 cos θx − sin θx
0 sin θx cos θx

pxpy
pz


Apparently, all three rotation matrices can be combined to form new rotation matrices

to perform complex rotations about all dimensions. For example, the rotation matrix

that rotates vectors first about the x axis, then about the y axis, and finally about the z

axis is the following:

R′ = RzRyRx

The analytical form of the above rotation matrix is the following:

R′ =

cos θy cos θz − cos θx sin θz + sin θx sin θy cos θz sin θx sin θz + cos θx sin θy cos θz
cos θy sin θz cos θx cos θz + sin θx sin θy sin θz − sin θx cos θz + cos θx sin θy sin θz
− sin θy sin θx cos θy cos θx cos θy


We can easily transform any rotation matrix R̂ to an affine transformation matrix R just

by padding the last line and the last column with (0, . . . , 0, 1):

R =

 R̂

0
...
0

[
0 · · · 0

]
1


From now on, any rotation matrix will be an affine transformation matrix.

Nikolaos Kofinas 13 July 2012

2. BACKGROUND

Affine Transformation Matrices and Kinematics

For the purposes of kinematics, we are using rotation and translation matrices, so that we

can transform points in the three-dimensional space. We consider affine transformation

matrices that combine rotation and translation; the X block of the matrix defines the

rotation, while the Y block of the matrix defines the translation:

T =

 R̂

dxdy
dz

[
0 0 0

]
1


2.5 Denavit-Hartenberg (DH) Parameters

Denavit and Hartenberg [?, ?] have devised a way of creating a transformation matrix

that describes points in one end of a joint to a coordinate system that is fixed to the

other end of the joint, as a function of the joint state. They concluded that we can

fully describe this transformation matrix using only four parameters, known as Denavit-

Hartenberg (DH) parameters: a, α, d, and θ. Before we can explain these parameters we

must first establish the reference frame of each joint i with respect to the reference frame

of its previous joint:

• The zi-axis is set to the direction of the joint axis (the rotation direction).

• The xi-axis is parallel to the common normal between zi and zi−1 (exterior product).

The direction of xi is derived using the right-hand rule from zi−1 to zi.

• The yi-axis follows from the xi and zi axes to form a right-handed coordinate system.

Now, we can describe the DH parameters [?] (cf. Figure 2.4):

• a: length of the common normal

• α: angle about the common normal, from zi−1-axis to zi-axis

• d: offset along the zi−1-axis to the common normal

• θ: angle about the zi−1-axis, from xi−1-axis to xi-axis

Nikolaos Kofinas 14 July 2012

2.5 Denavit-Hartenberg (DH) Parameters

a

θ

α

d

xn-1

xn-1

zn-1

xn

zn

zn

Figure 2.4: Denavit-Hartenberg (DH) parameters: a, α, d, θ (from www.tekkotsu.org)

The Kinematics section in the documentation of the Tekkotsu framework [?] is a great

resource with text, figures, and videos for understanding the role of these parameters and

how they are found.

Now, we can move from the base reference frame of some joint to the transformed

reference frame of this joint using the transformation matrix TDH , which consists of two

translations and two rotations parametrized by the DH parameters of the joint:

TDH = Rx(α)Tx(a)Rz(θ)Tz(d)

The analytical form of the resulting matrix from the above composition is the following:

TDH =


cos θ − sin θ 0 a

sin θ cosα cos θ cosα − sinα −d sinα
sin θ cosα cos θ sinα cosα d cosα

0 0 0 1


It is easy to see that the matrix above is an affine transformation matrix, because it is

the product of affine transformation matrices.

Nikolaos Kofinas 15 July 2012

www.tekkotsu.org

2. BACKGROUND

2.6 Mathematica

Mathematica c© is a software tool for mathematical computations created by the Wolfram

company (www.wolfram.com). This tool is widely-used, because, among other things, it

can easily find solutions to differential equations and can perform symbolic computations.

For the purposes of this thesis, we exploited its capability to perform large-scale symbolic

computations with matrices and simplify symbolic expressions in reasonable time.

The following code excerpt is a small example of symbolic computation with Math-

ematica. We construct two matrices with cosines and sines containing two symbols,

theta1 and theta2. Next, we multiply those two matrices symbolically and finally we

simplify the result:

Matrix1 = {{Cos[theta1], -Sin[theta1]}, {Cos[theta1], -Cos[theta1]}};

Matrix2 = {{Cos[theta2], -Sin[theta2]}, {Cos[theta2], -Cos[theta2]}};

T = Matrix1.Matrix2;

Simplify[T];

MatrixForm[%]

The result of these symbolic computations is the following:

Matrix1 =

[
cos θ1 − sin θ1

cos θ1 − cos θ1

]
Matrix2 =

[
cos θ2 − sin θ2

cos θ2 − cos θ2

]
T =

[
cos θ1 cos θ2 − cos θ2 sin θ1 cos θ2 sin θ1 − cos θ1 sin θ2

0 cos θ1 cos θ2 − cos θ1 sin θ2

]
Tsimplified =

[
cos θ2 (cos θ1 − sin θ1) sin (θ1 − θ2)

0 cos θ1 (cos θ2 − sin θ2)

]
The example above is quite simple, but fully illustrates the symbolic capabilities of Math-

ematica and particularly the simplification step, which is very important for our work,

given that we have to deal with much larger and more complex matrices.

Nikolaos Kofinas 16 July 2012

www.wolfram.com

Chapter 3

NAO Kinematics: The Problem

3.1 NAO Robot Specifications

Aldebaran NAO is a humanoid robot with five kinematic chains (head, two arms, two

legs). It is 58cm tall and it has about 5kg of mass. The version we are working on is the

RoboCup edition v3.3 with 21 DOF. NAO has two DOF on the head, four DOF on each

arm, five DOF on each leg, and one DOF in the pelvis, which is shared between the two

legs. The five kinematic chains and their joints are the following:

Head: HeadYaw, HeadPitch

Left Arm: LShoulderPitch, LShoulderRoll, LElbowYaw, LElbowRoll

Right Arm: RShoulderPitch, RShoulderRoll, RElbowYaw, RElbowRoll

Left Leg: LHipYawPitch, LHipRoll, LHipPitch, LKneePitch, LAnklePitch, LAnkleRoll

Right Leg:RHipYawPitch, RHipRoll, RHipPitch, RKneePitch, RAnklePitch, RAnkleRoll

The joints LHipYawPitch and RHipYawPitch are just different names for the shared

(common) joint (HipYawPitch) between the two legs. Figure 3.1 shows the physical

arrangement of the five chains and their joints on the NAO robot (Academic edition).

Note that the RoboCup edition of the NAO robot is missing four DOF from the two

hands (LWristYaw, LHand, RWristYaw, and RHand).

To fully specify the joints of the NAO robot, we give the length of all the links of

the robot (Table 3.2), the operational range in radians and degrees of the head joints

Nikolaos Kofinas 17 July 2012

3. NAO KINEMATICS: THE PROBLEM

Figure 3.1: Aldebaran NAO v3.3 (Academic edition) kinematic chains and joints

(Figures 3.3), the arm joints (Figure 3.4), and the leg joints (Figure 3.5), as well as

the mass of each joint/link (Table 3.1). These values have been extracted from the

documentation [?] provided by the manufacturer of the robot, Aldebaran Robotics. The

center of mass for each link/joint is represented by a point in the three-dimensional space

of that joint assuming a zero posture of that joint. The documentation gives mass values

only for the right part of the robot; we assume that the robot is fully symmetric with

respect to the sagittal plane to obtain the masses for the left part. In general, the robot

is supposed to be fully symmetric, but interestingly, according to the manufacturer, some

joints on the left side have a different range than the corresponding joints on the right

side. Additionally, although some joints appear to be able to move within a large range,

the hardware controller of the robot prohibits access to the extremes of these ranges,

because of possible collisions with the NAO shell.

Nikolaos Kofinas 18 July 2012

3.1 NAO Robot Specifications

Name Size (mm)

NeckOffsetZ 126.50

ShoulderOffsetY 98.00

ElbowOffsetY 15.00

UpperArmLength 105.00

LowerArmLength 55.95

ShoulderOffsetZ 100.00

HandOffsetX 57.75

HipOffsetZ 85.00

HipOffsetY 50.00

ThighLength 100.00

TibiaLength 102.90

FootHeight 45.19

HandOffsetZ 12.31

Figure 3.2: NAO links and their sizes

Nikolaos Kofinas 19 July 2012

3. NAO KINEMATICS: THE PROBLEM

Joint Name Range in Degrees◦ Range in Radians

HeadYaw -119.5◦ to 119.5◦ -2.0857 to 2.0857

HeadPitch -38.5◦ to 29.5◦ -0.6720 to 0.5149

Figure 3.3: NAO head joints and their operational range

Joint Name Range in Degrees◦ Range in Radians

LShoulderPitch -119.5◦ to 119.5◦ -2.0857 to 2.0857

LShoulderRoll -18◦ to 76◦ -0.3142 to 1.3265

LElbowYaw -119.5◦ to 119.5◦ 1.5446 to 0.0349

LElbowRoll -88.5◦ to -2◦ -0.6720 to 0.5149

RShoulderPitch -119.5◦ to 119.5◦ -2.0857 to 2.0857

RShoulderRoll -38.5◦ to 29.5◦ -1.3265 to 0.3142

RElbowYaw -119.5◦ to 119.5◦ -2.0857 to 2.0857

RElbowRoll -38.5◦ to 29.5◦ 0.0349 to 1.5446

LWristYaw and RWristYaw disabled disabled

Figure 3.4: NAO arms joints and their operational range

Nikolaos Kofinas 20 July 2012

3.1 NAO Robot Specifications

Joint Name Range in Degrees◦ Range in Radians

LHipYawPitch-

RHipYawPitch

-65.62 to 42.44 -1.145303 to 0.740810

LHipRoll -21.74◦ to 45.29◦ -0.379472 to 0.790477

LHipPitch -101.63◦ to 27.73◦ -1.773912 to 0.484090

LKneePitch -5.29◦ to 121.04◦ -0.092346 to 2.112528

LAnklePitch -68.15◦ to 52.86◦ -1.189516 to 0.922747

LAnkleRoll -22.79◦ to 44.06◦ -0.397880 to 0.769001

RHipRoll -42.30◦ to 23.76◦ -0.738321 to 0.414754

RHipPitch -101.54◦ to 27.82◦ -1.772308 to 0.485624

RKneePitch -5.90◦ to 121.47◦ -0.103083 to 2.120198

RAnklePitch -67.97◦ to 53.40◦ -1.186448 to 0.932056

RAnkleRoll -45.03◦ to 22.27◦ -0.785875 to 0.388676

Figure 3.5: NAO legs joints and their operational range

Nikolaos Kofinas 21 July 2012

3. NAO KINEMATICS: THE PROBLEM

Table 3.1: Masses of links/joints (frames) of the NAO robot

Masses for NAO v3.3 RoboCup edition

Frame Name Mass (Kg) CoMx (mm) CoMy (mm) CoMz (mm)

Torso 1.03948 -4.15 0.07 42.58

HeadYaw 0.05930 -0.02 0.17 25.56

HeadPitch 0.52065 1.2 -0.84 53.53

RShoulderPitch 0.06996 -1.78 24.96 0.18

RShoulderRoll 0.12309 18.85 -5.77 0.65

RElbowYaw 0.05971 -25.6 0.01 -0.19

RElbowRoll 0.185 65.36 -0.34 -0.02

LShoulderPitch 0.06996 -1.78 -24.96 0.18

LShoulderRoll 0.12309 18.85 5.77 0.65

LElbowYaw 0.05971 -25.6 -0.01 -0.19

LElbowRoll 0.185 65.36 0.34 -0.02

RHipYawPitch 0.07117 -7.66 12 27.17

RHipRoll 0.1353 -16.49 -0.29 -4.75

RHipPitch 0.39421 1.32 -2.35 -53.52

RKneePitch 0.29159 4.22 -2.52 -48.68

RAnklePitch 0.13892 1.42 -0.28 6.38

RAnkleRoll 0.16175 25.4 -3.32 -32.41

LHipYawPitch 0.07117 -7.66 -12 27.17

LHipRoll 0.1353 -16.49 0.29 -4.75

LHipPitch 0.39421 1.32 2.35 -53.52

LKneePitch 0.29159 4.22 2.52 -48.68

LAnklePitch 0.13892 1.42 0.28 6.38

LAnkleRoll 0.16175 25.4 3.32 -32.41

Total Mass 4.88083

3.2 The Kinematics Problem for NAO

The NAO robot has a large number of DOF, therefore it can perform several complex

moves. Some examples of such moves are walking, kicking a ball, standing up, etc.

Kinematics are quite useful for NAO software developers, because they can be used for

Nikolaos Kofinas 22 July 2012

3.2 The Kinematics Problem for NAO

planning and executing such complex movements. For example, using forward kinematics

and the current joint values, one can easily find the exact position and orientation of the

camera with respect to the floor the robot is standing on and therefore determine the

horizon in the camera view. Likewise, using inverse kinematics, one can easily follow

planned trajectories with one foot, while standing on the other, to perform dynamic kick

motions.

3.2.1 The Forward Kinematics Problem for NAO

The forward kinematics problem is to define a mapping from the joint space of the robot

to the three-dimensional space with respect to any base coordinate frame. All joints of

the NAO robot are equipped with 12-bit encoders, which are updated at a frequency of

100Hz, and therefore the current joint values are readily available at any time. Despite

the 21 DOF, the forward kinematics problem can be easily decomposed because three

of the five kinematic chains (the head and the two arms) are completely independent

and two of them (the two legs) only have one common joint. Given that in forward

kinematics we do not affect the values of the joints, but only read the current state of

each joint, we can assume that even the two legs chains are completely independent.

Therefore, forward kinematics for NAO can been seen as five independent problems with

corresponding solutions, one for each kinematic chain. Each of these solutions provides

the exact point (position and orientation) in the three-dimensional space with respect to

any base coordinate frame of any end effector along the corresponding kinematic joint.

These solutions can be combined to obtain a solution for a bigger kinematic chain formed

by any combination of the five independent chains (e.g. the kinematic chain from the

right foot to the head or the kinematic chain from the left foot to the right hand).

The importance of solving the forward kinematics problem for NAO is twofold: apart

from the ability to locate the exact position and orientation of any end effector of the

robot, it provides the means to calculate the center of mass of the robot for the current

configuration, which is most-needed for balancing. In addition, as we shall see later,

solution to the inverse kinematics problem would be intractable without solving the

forward kinematics problem first.

Nikolaos Kofinas 23 July 2012

3. NAO KINEMATICS: THE PROBLEM

3.2.2 The Inverse Kinematics Problem for NAO

The inverse kinematics problem is to define ways to go from the three-dimensional space

of the robot to the joint space. In particular, it defines a relation between points in the

three-dimensional space (position and orientation) and joint values in the joint space of

a kinematic chain. For the reasons stated above, the inverse kinematics problem can be

decomposed again into five independent problems. The coupling between the two legs

due to the common joint is initially ignored. This is a required assumption to make the

problem solvable; the obtained solutions can be combined in different ways to form a

unique solution. A solution to each of these independent problems can provide the joint

values which place the end effector of the corresponding kinematic chain to a specific

point in the three-dimensional space of the robot torso.

Inverse kinematics represents a much more difficult problem compared to forward

kinematics for at least two reasons. First, it leads to a system of non-linear equations,

which may, or may not, have an analytical solution. Second, as the number of DOF

increases and the kinematic chain becomes more flexible, a point in the three-dimensional

space may have more than one matching points in the joint space of the chain. This

multiplicity of solutions defines a complex relation, but not a mapping, between the two

spaces.

The importance of solving the inverse kinematics problem for NAO lies in the ability

to follow any (predefined or dynamically-generated) trajectory in the three-dimensional

space with any of the five end effectors. Inverse kinematics essentially provide the mech-

anism to transform such a trajectory into another trajectory in the joint space of the

robot.

The inverse kinematics problem can be solved analytically with closed-form equations

or numerically with an iterative approximation method [?]. The analytical solution is in

general faster than the fastest numerical solution and therefore is more appropriate for

real-time execution. Numerical solutions are also subject to singularities, which result in

a failure to obtain a solution, even if one exists. Additionally, numerical solutions are

iterative; for real-time execution the number of iterations is limited and therefore they

may fail to converge. For these reasons, we aim to find an analytical solution to the

inverse kinematics problem for the NAO robot. It is well-known that inverse kinematics

can be obtained analytically, if the chain has five or less DOF. If the chain has six DOF,

Nikolaos Kofinas 24 July 2012

3.3 Related Work

an analytical solution can be obtained, only if three consecutive joints have intersecting

axes. Three of the kinematics chains of the NAO robot have less than five DOF. The legs

have six DOF, however the meet the condition given above because the three hip joints

have intersecting axes. Therefore, it is possible to obtain a fully analytical solution for

the inverse kinematics of the NAO.

3.3 Related Work

The problem of forward and inverse kinematics for the NAO robot is a familiar problem

to all the teams participating in RoboCup SPL. The solution to forward kinematics

is quite straightforward and most teams have implemented their own code for forward

kinematics computations. There are only a few known solutions for the problem of inverse

kinematics. We review existing related work in the next few sections.

3.3.1 Aldebaran Robotics

Aldebaran Robotics provides a forward kinematics mechanism integrated within the pro-

prietary NaoQi middleware for the NAO robot. However, this mechanism does not accept

any input and provides a solution only for the current joint configuration of the robot. As

a result, it is impossible to run Aldebaran’s forward kinematics for a specific set of joint

values, for example the joint values recorded when a specific picture was acquired from

the camera. The ability to provide any set of joints is important, not only for finding

the position of the camera in the three-dimensional at specific times, but also for verify-

ing candidate solutions returned by inverse kinematics. On the other hand, Aldebaran

provides the DH parameters for all the joints of the NAO robot and that was very useful.

Aldebaran Robotics provides an inverse kinematics mechanism integrated within the

proprietary NaoQi middleware for the NAO robot. These functions in the API of the

robot can move the end effector of a kinematic chain to a given point in the three-

dimensional space. The method used to provide the solution is based on the Jacobian

iterative approximation method. Furthermore, the omni-directional walk engine provided

by Aldebaran Robotics uses this approach to follow planned foot trajectories. Although

the resulting solutions are in most cases accurate, the method can easily fall into sin-

Nikolaos Kofinas 25 July 2012

3. NAO KINEMATICS: THE PROBLEM

gularities; if that happens, the robot gets stuck in a specific configuration. Singularities

present a serious problem with possible catastrophic consequences for the robot.

3.3.2 B-Human Inverse Kinematics Solution

B-Human is the RoboCup SPL team of the University of Bremen in Germany. Each year

they publish a code release, which includes the full code they used in the last RoboCup

and a documentation for this code. In their recent code release [?] they include an

inverse kinematics solution for the legs of NAO, albeit with under certain simplification

assumptions and approximations. The solution provided always makes the foot parallel

to the plane defined by the z-axis and the x-axis of the torso. If the target point violates

this assumption, the solution will reach the target position, but will ignore the target

orientation, and therefore it will only be an approximate solution.

3.3.3 QIAU Inverse Kinematics Solution

MRL is the RoboCup SPL team of the Qazvin Islamic Azad University (QIAU) in Tehran,

Iran. They have published [?] an analytical solution for the problem of inverse kinematics

for the legs. We have tried to implement their solution, but unfortunately we were not

able to reproduce their results.

Nikolaos Kofinas 26 July 2012

Chapter 4

NAO Kinematics: The Solution

As mentioned in Chapter ??, the existing approaches to kinematics for the NAO robot

are not completely suitable for our needs. We seek to find a solution to the forward

kinematics problem for any set of joint values as input and not only for the current joint

values. In addition, we seek to find a real-time analytical solution for the problem of

inverse kinematics without any approximations. In the sections below, we describe our

solutions to both of these problems.

4.1 Forward Kinematics for the NAO Robot

Aldebaran Robotics provides the DH parameters for each kinematic chain of the robot in

the documentation [?]. However, our experimentation with the provided values revealed

that the given parameters for the arm chains are incorrect. Therefore, we found our own

parameters for the arms and we used the provided parameters for the legs and the head.

NAO Zero Position

We must define the base frame of the robot and the zero position of the joints before we

proceed. The base frame is taken to be the torso frame; Figure 4.1 shows the axes of

this frame. The same figure shows also the zero position of all the joints of the robot,

which is the one provided by Aldebaran Robotics. As we can see, in this position the

ShoulderRoll joints are not really roll joints, but are yaw joints, so we can understand

Nikolaos Kofinas 27 July 2012

4. NAO KINEMATICS: THE SOLUTION

that the names of the joints do not necessarily describe the actual movement of the joint

in the base frame given the zero position.

Figure 4.1: Base (torso) frame and zero position of the joints

Notation

We provide a brief description of the symbols we use in our math calculations. All

matrices used are affine transformation matrices of three types: T is a transformation

matrix, Rx, Ry, Rz are basic rotations matrices, and A is a translation matrix. The

subscript of a symbol refers to the start frame and the superscript refers to the destination

frame. The torso is the point where all the kinematic chains begin and is located at the

center of the NAO body. “Base” is the start frame of the chain (the torso frame),

while “End” is the end effector of the chain. The numbers appearing as subscripts or

superscripts refer to the joints in the current kinematic chain, numbered consistently

Nikolaos Kofinas 28 July 2012

4.1 Forward Kinematics for the NAO Robot

with the ordering given in the tables of Chapter 3. Also, we denote the initialization of a

translation matrix as A(dx, dy, dz) and of rotation matrices as Rx(θx), Ry(θy), or Rz(θz).

We present the DH parameters of each kinematic chain in a separate table and, besides

the DH parameters, we provide the translations from the “Base” to the first joint and

from the last joint to the “End”. Finally, we provide some necessary rotations to adjust

the frame of the last joint to the frame of the end effector (“End”).

Forward Kinematics Equations

Forward kinematics for each chain of the NAO robot is a transformation that maps a

point from the frame of the last joint to the base frame. In our case, the end effector is the

point of interest. Forward kinematics are defined in terms of transformation, rotation,

and translation matrices, and the final result is a single transformation matrix that maps

points from one frame to another.

Extracting the Point in the Three-Dimensional Space

The result of forward kinematics is an affine transformation matrix T with the X block

being a rotation matrix and the Y block being a translation vector. We need to extract

the (px, py, pz) position and the (ax, ay, az) orientations of the final point. The position

(px, py, pz) can be simply read off the translation part of the transformation matrix:

px = T(1,4)

py = T(2,4)

pz = T(3,4)

The rotation of the final transformation table is a RzRyRx rotation table, whose analytical

form is shown in Section 2.4. Now it’s easy to extract the orientation (ax, ay, az):

ax = arctan2
(
T(3,2), T(3,3)

)
ay = arctan2

(
−T(3,1),

√
T(3,2)

2 + T(3,3)
2

)
az = arctan2

(
T(2,1), T(1,1)

)

Nikolaos Kofinas 29 July 2012

4. NAO KINEMATICS: THE SOLUTION

Table 4.1: DH parameters for the head chain of the NAO robot

Frame (Joint) a α d θ

Base A(0, 0,NeckOffsetZ)

HeadYaw 0 0 0 θ1

HeadPitch 0 −π
2

0 θ2 − π
2

Rotation Rx(
π
2
)Ry(

π
2
)

Top Camera A(topCameraX, 0, topCameraZ)

Bottom Camera A(bottomCameraX, 0, bottomCameraZ)

topCameraX=53.9mm, topCameraZ=67.9mm, bottomCameraX=48.8mm, bottomCameraZ=23.8mm

4.1.1 Forward Kinematics for the Head

The head is the simplest kinematic chain of the NAO robot, but it has two useful end

effectors, namely the top and the bottom cameras. Table 4.1 shows the DH parameters

for the head chain. Now, we can combine these matrices to find the point of the end

effector in the frame space of the torso:

TEnd
Base = A0

BaseT
1
0 T

2
1Rx(

π
2
)Ry(

π
2
)AEnd

2

T 1
0 and T 2

1 are the DH transformation matrices of the corresponding joints (HeadYaw,

HeadPitch). AEnd
2 is one of the two translation matrices given in Table 4.1 for the two end

effectors (top and bottom camera). The point of the end effector in the three-dimensional

space of the torso can be extracted from TEnd
Base.

4.1.2 Forward Kinematics for the Left Arm

The kinematic chain for the left arm consists of four joints. So, we need to find four

sets of DH parameters, one for each joint. First, we must move from the torso to the

base of the joint and we can do that with a simple translation along the y-axis and the

z-axis. After that, we must align the coordinate frame with the rotation axis of the

first joint (LShoulderPitch). So, we rotate about the x-axis of the coordinate frame by

−π
2
, thus the α parameter for LShoulderPitch is −π

2
, while d, a are 0. Now, we must

rotate the coordinate frame again to become aligned with the rotation axis of the second

joint (LShoulderRoll). So, we rotate about the x-axis by π
2
, thus the α parameter for

Nikolaos Kofinas 30 July 2012

4.1 Forward Kinematics for the NAO Robot

Table 4.2: DH parameters for the left arm chain of the NAO robot

Frame (Joint) a α d θ

Base A(0, ShoulderOffsetY, ShoulderOffsetZ)

LShoulderPitch 0 −π
2

0 θ1

LShoulderRoll 0 π
2

0 θ2 + π
2

LElbowYaw ElbowOffsetY π
2

UpperArmLength θ3

LElbowRoll 0 −π
2

0 θ4

Rotation Rz(−π
2
)

End effector A(HandOffsetX+LowerArmLength, 0, 0)

LShoulderRoll is π
2
, while d, a are 0. Next, we need to align the coordinate frame with the

rotation axis of the third joint (LElbowYaw). To do so, we must rotate about the y-axis.

The DH parameters do not directly encode a rotation about the y-axis, so we must first

rotate about the z-axis and then about the x-axis to effectively realize a rotation about

the y-axis. Thus, we add π
2

to the angle θ2 of the previous joint (to rotate about the

z-axis) and then rotate about the x-axis by π
2

(the α parameter of LElbowYaw). Also,

we must move ElbowOffsetY towards the x2 axis so the parameter a is ElbowOffsetY.

Then, we move along the z-axis to reach the position of the LElbowYaw joint, so its

d parameter is set to UpperArmLength. Finally, for the fourth joint (LElbowRoll) we

rotate about the x-axis by −π
2
, thus the α parameter for LElbowRoll is −π

2
, while d, a

are 0. At the end, we only need a simple rotation to fix the orientation of our coordinate

frame and a simple translation to reach the end effector.

Table 4.2 shows the DH parameters for all the joints of the left arm chain along

with the necessary translations and rotations. Now, we can easily calculate the final

transformation matrix:

TEnd
Base = A0

BaseT
1
0 T

2
1 T

3
2 T

4
3Rz(−π

2
)AEnd

4

4.1.3 Forward Kinematics for the Right Arm

The kinematic chain of the right arm is fully symmetric with the left arm chain relatively

to the plane defined by the x-axis and the z-axis. So, the differences between the two

chains are only in the distances along the y-axis and in the joints that rotate about

Nikolaos Kofinas 31 July 2012

4. NAO KINEMATICS: THE SOLUTION

Table 4.3: DH parameters for the right arm chain of the NAO robot

Frame (Joint) a α d θ

Base A(0,−ShoulderOffsetY, ShoulderOffsetZ)

RShoulderPitch 0 −π
2

0 θ1

RShoulderRoll 0 π
2

0 θ2 + π
2

RElbowYaw −ElbowOffsetY π
2

UpperArmLength θ3

RElbowRoll 0 −π
2

0 θ4

Rotation Rz(−π
2
)

End effector A(HandOffsetX+ LowerArmLength, 0, 0)

the y-axis. Also, in this chain we must add one extra rotation matrix after the final

translation, because the z-axis is inverted. All the DH parameters for this chain can be

seen in Table 4.3 and the final transformation matrix is:

TEnd
Base = A0

BaseT
1
0 T

2
1 T

3
2 T

4
3Rz(−π

2
)AEnd

4

4.1.4 Forward Kinematics for the Left Leg

The kinematic chain for the left leg has six joints and it is the longest chain on the

NAO robot. The DH parameters for these joints are interesting, because of the “weird”

orientation of the HipYawPitch joint. Table 4.4 shows the DH parameters for the entire

kinematic chain of the left leg and the final transformation matrix is:

TEnd
Base = A0

BaseT
1
0 T

2
1 T

3
2 T

4
3 T

5
4 T

6
5Rz(π)Ry(−π

2
)AEnd

6

4.1.5 Forward Kinematics for the Right Leg

Similarly to the arms, the kinematic chains for the legs are fully symmetric relatively to

the plane defined by the x-axis and the z-axis. So, the differences between the two chains

is only in the distances along the y-axis and in the joints that rotate about the y-axis.

Table 4.5 shows all the DH parameters for the right leg chain and the final transformation

matrix is:

TEnd
Base = A0

BaseT
1
0 T

2
1 T

3
2 T

4
3 T

5
4 T

6
5Rz(π)Ry(−π

2
)AEnd

6

Nikolaos Kofinas 32 July 2012

4.1 Forward Kinematics for the NAO Robot

Table 4.4: DH parameters for the left leg chain of the NAO robot

Frame (Joint) a α d θ

Base A(0,HipOffsetY,−HipOffsetZ)

LHipYawPitch 0 −3π
4

0 θ1 − π
2

LHipRoll 0 −π
2

0 θ2 + π
4

LHipPitch 0 π
2

0 θ3

LKneePitch −ThighLength 0 0 θ4

LAnklePitch −TibiaLength 0 0 θ5

LAnkleRoll 0 −π
2

0 θ6

Rotation Rz(π)Ry(−π
2
)

End effector A(0, 0,−FootHeight)

Table 4.5: DH parameters for the right leg chain of the NAO robot

Frame (Joint) a α d θ

Base A(0,−HipOffsetY,−HipOffsetZ)

RHipYawPitch 0 −π
4

0 θ1 − π
2

RHipRoll 0 −π
2

0 θ2 − π
4

RHipPitch 0 π
2

0 θ3

RKneePitch −ThighLength 0 0 θ4

RAnklePitch −TibiaLength 0 0 θ5

RAnkleRoll 0 −π
2

0 θ6

Rotation Rz(π)Ry(−π
2
)

End effector A(0, 0,−FootHeight)

4.1.6 Forward Kinematics for Combined Chains

The forward kinematics transformations presented above assume the torso frame as the

base frame. In practice, a NAO user may be interested in finding the point of the

torso relatively to one of the feet. Note that this is the forward kinematics problem

for the reverse chain. Given that the forward kinematics transformation matrices are

affine transformation matrices, we can obtain the solution for this reverse problem by

simply inverting the corresponding transformation matrix. For example, inverting the

transformation matrix for the left leg chain yields a transformation matrix for the point

Nikolaos Kofinas 33 July 2012

4. NAO KINEMATICS: THE SOLUTION

of the torso in the frame of the left foot:

TTorso
LFoot =

(
T LFoot

Torso

)−1

This solution reversion property of the forward kinematics allows the combination of

multiple chains to obtain the point of the end effector of one chain in the frame of the

end effector of the other chain through their common point (torso).

For example, it is possible to find the point of the head relatively to the left foot. The

kinematic chains for the head and for the left leg are relative to the torso frame. So, by

inverting the transformation matrix of the left leg chain, we locate the torso relatively

to the left foot frame. Then, we just multiply with the transformation matrix of the

head chain and obtain a new transformation matrix that describes the point of the head

relatively to the left foot frame.

THead
LFoot =

(
T LFoot

Torso

)−1
THead

Torso

This property is extremely useful, because we can describe any end effector relatively to

the frame of any other end effector. For example, with this, we can find the exact height

of the camera from the ground.

4.1.7 Calculation of the Center Of Mass

The Center of Mass (CoM) of a body in the three-dimensional space is a position, which

corresponds to the weighted average location of all the mass in the body. From a physics

point of view, the body (even if oddly-shaped) could be represented by a point mass

located at the CoM. In humanoid robots, knowledge of the CoM is important to maintain

balance. It is easy to see that the CoM changes, as the joint values change and the

kinematic chains move in the three-dimensional space.

The NAO robot consists of a group of connected parts (joints and the corresponding

links). Each part has its own known mass and its own (local) CoM at a known static

position. For any given configuration of the robot, forward kinematics can be applied

to locate each of these parts in the three-dimensional space of the torso frame and from

there calculate the exact position of the robot CoM relatively to the torso frame.

Aldebaran Robotics provides the information needed for CoM calculations, in partic-

ular the mass of the whole robot and the masses of all parts of the robot. The mass of

Nikolaos Kofinas 34 July 2012

4.2 Inverse Kinematics for the NAO Robot

each distinct part is referenced by the corresponding joint of that part and its own local

CoM is given relatively to its own joint frame.

The CoM of the entire robot is calculated relatively to the torso frame and the cal-

culation order is simple. We first construct smaller kinematic chains, one for each of the

21 joints. Each of these smaller kinematic chains terminates at the corresponding joint

and the position of the local CoM is set to be the end effector. We compute the forward

kinematics for each of these 21 chains. Then, we extract the translation block of each

transformation matrix and we multiply it with the mass of the corresponding part/joint.

In total, we have 21 chains plus the torso chain (a zero-length chain). Finally, we add all

the individual weighted translation matrices and the result is divided by the total mass

of the robot. The outcome of this calculation is the position of the CoM relatively to the

torso frame.

4.2 Inverse Kinematics for the NAO Robot

Forward kinematics can find the point of an end effector, relatively to the start frame,

given the values of the joints. Now, we turn our attention to the inverse problem: find a

set of values for the joints that drive a given end effector to a desired point relatively to

the torso frame. The inverse kinematics presented below solve the problem for the five

kinematic chains that start at the robot torso.

A point of the end effector in the three-dimensional space consists of a position

(px, py, pz) and an orientation (ax, ay, az). As mentioned above, the outcome of forward

kinematics is an affine transformation matrix, which includes a rotation block and a

translation block. The rotation block R takes the form RzRyRx. Thus, we can construct

the complete transformation matrix T from the base frame to the point of the end effector

mentioned above:

T =


cos ay cos az − cos ax sin az + sin ax sin ay cos az sin ax sin az + cos ax sin ay cos az px

cos ay sin az cos ax cos az + sin ax sin ay sin az − sin ax cos az + cos ax sin ay sin az py

− sin ay sin ax cos ay cos ax cos ay pz

0 0 0 1


Given T , our goal now is to find a set of joint values that leads to the same transformation

through the kinematic chain. As mentioned before, the problem of inverse kinematics

Nikolaos Kofinas 35 July 2012

4. NAO KINEMATICS: THE SOLUTION

cannot be solved without the solution of forward kinematics. This is true, because the

equations we must solve to find the values of the joints are formed by writing down the

forward kinematics transformation matrix symbolically with the θi’s of the DH param-

eters appearing as symbols in the matrix. This symbolic matrix is set to be equal to

T to yield twelve non-linear equations with the values θi of the n joints of the chain as

unknowns. In fact, we will have a total of 2n unknowns, because all the θi’s appear inside

a sine or a cosine, therefore for each joint i there are two dependent unknowns in the

system, sin θi and cos θi.

As we shall see below, we obtain some of the solutions using arccos and arcsin. The

problem is that arcsin returns an angle in
[
−π

2
,+π

2

]
and arccos returns an angle in [0, π],

even though the possible values of a joint can be in the range [−π,+π]. Thus, if θ∗i is a

value returned by arcsin or arccos as a solution, there is one additional symmetric solution,

π − θ∗i for arcsin and −θ∗i for arccos. Due to these symmetries, the equations lead to a

small number of distinct candidate solutions, some of which may be infeasible or invalid

because of the constrained range of each joint. To determine a valid and correct solution,

we simply run each one of these solutions through the forward kinematics to verify that

indeed the end effector of the chain reaches the desired position and orientation. Invalid

solutions are discarded and only correct ones are kept.

In summary, the solution methodology we followed to solve the inverse kinematics

problem includes the following steps:

1. Construct the (numeric) transformation matrix to the target point

2. Construct the (symbolic) transformation matrix through the chain

3. Form a non-linear system by equating the two matrices

4. Manipulate both sides to make the problem easier

5. Find values for some joints through geometry and trigonometry

6. Find values for the remaining joints from the non-linear system

7. Validate all candidate solutions through forward kinematics

This methodology is quite generic and can be used in solving the problem for any kine-

matic chain of up to six DOF. Some steps of this methodology appear in the literature,

however to our knowledge no previous work has employed all these seven steps together.

Nikolaos Kofinas 36 July 2012

4.2 Inverse Kinematics for the NAO Robot

4.2.1 Inverse Kinematics for the Head

The head chain consists of only two joints, therefore we can work either with the position

(px, py, pz) or with the orientation (ax, ay, az) of the target point to obtain a solution.

In the latter case, we can achieve the desired target orientation simply by setting the

HeadYaw and HeadPitch joints to az and ay respectively. In the former case, we first

construct the symbolic matrix from forward kinematics along the head chain:

T =


− cos θ1 sin θ̂2 − sin θ1 cos θ1 cos θ̂2 l2 cos θ1 cos θ̂2 − l1 cos θ1 sin θ̂2

− sin θ1 sin θ̂2 cos θ1 cos θ̂2 sin θ1 l2 cos θ̂2 sin θ1 − l1 sin θ1 sin θ̂2

− cos θ̂2 0 − sin θ̂2 l3 − l2 sin θ̂2 − l1 cos θ̂2

0 0 0 1


where θ̂2 is the DH parameter θ for the second joint, l1 = cameraX, l2 = cameraZ, and

l3 = NeckOffsetZ. Since we only know the position (px, py, pz), we cannot reconstruct the

rotation block of the matrix, so we focus on the translation block. From the symbolic

matrix, we have:

T(3,4) = l3 − l2 sin θ̂2 − l1 cos θ̂2 = pz

We know from trigonometry that:

a sin θ + b cos θ =
√
a2 + b2 sin (θ + ψ)

ψ = arctan

(
b

a

)
+

{
0 if a ≥ 0
π if a < 0

Given that l2 > 0, we can now calculate θ̂2 as follows:

θ̂2 = arcsin

(
− pz + l3√
l1

2 + l2
2

)
− arctan

(
l1
l2

)
Now the final joint value θ2 is θ2 = θ̂2 + π

2
. From now on, we substitute θ2 − π

2
in θ̂2.

Now, we can easily extract θ1 from T(1,4):

θ1 = arccos

(
px

l2 cos
(
θ2 − π

2

)
− l1 sin

(
θ2 − π

2

))
So, the final inverse kinematics equations for the head chain are:

θ2 = arcsin

(
− pz + l3√
l1

2 + l2
2

)
− arctan

(
l1
l2

)
+
π

2

Nikolaos Kofinas 37 July 2012

4. NAO KINEMATICS: THE SOLUTION

θ2 = π − arcsin

(
− pz + l3√
l1

2 + l2
2

)
− arctan

(
l1
l2

)
+
π

2

θ1 = ± arccos

(
px

l2 cos
(
θ2 − π

2

)
− l1 sin

(
θ2 − π

2

))
provided a target position (px, py, pz) or

θ1 = az

θ2 = ay

provided a target orientation (ax, ay, az).

4.2.2 Inverse Kinematics for the Left Arm

The left arm chain is far more complicated than the head chain. First, we construct the

symbolic transformation matrix for the left arm chain, then we remove from the chain

the Base and End transformation together with the End rotation.

T = A0
BaseT

1
0 T

2
1 T

3
2 T

4
3Rz(

π
2
)AEnd

4

T ′ =
(
A0

Base

)−1
T
(
AEnd

4

)−1 (
Rz(

π
2
)
)−1

Then we invert T ′:

T ′′ = (T ′)
−1

T ′′ =


r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

0 0 0 1


r11 = cos θ4 sin θ1 sin θ3 + cos θ1(cos θ̂2 cos θ3 cos θ4 − sin θ̂2 sin θ4)

r12 = cos θ3 cos θ4 sin θ̂2 + cos θ̂2 sin θ4

r13 = − cos θ̂2 cos θ3 cos θ4 sin θ1 + cos θ1 cos θ4 sin θ3 + sin θ1 sin θ̂2 sin θ4

r14 = −l1 cos θ3 cos θ4 + l2 sin θ4

r21 = − sin θ1 sin θ3 sin θ4 − cos θ1(cos θ4 sin θ̂2 + cos θ̂2 cos θ3 sin θ4)

r22 = cos θ̂2 cos θ4 − cos θ3 sin θ̂2 sin θ4

r23 = cos θ4 sin θ1 sin θ̂2 + (cos θ̂2 cos θ3 sin θ1 − cos θ1 sin θ3) sin θ4

Nikolaos Kofinas 38 July 2012

4.2 Inverse Kinematics for the NAO Robot

r24 = l2 cos θ4 + l1 cos θ3 sin θ4

r31 = cos θ3 sin θ1 − cos θ1 cos θ̂2 sin θ3

r32 = − sin θ̂2 sin θ3

r33 = cos θ1 cos θ3 + cos θ̂2 sin θ1 sin θ3

r34 = l1 sin θ3

where θ̂2 is the DH parameter θ for the second (LShoulderRoll) joint, l1 = ElbowOffsetY,

l2 = UpperArmLength.

We can extract theta3 from the resulted transformation matrix:

θ3 =

 arcsin
(
T ′′
(3,4)

l1

)
π − arcsin

(
T ′′
(3,4)

l1

)
The next angle we can find is θ4, so we focus on equations from the symbolic matrix,

where we only have θ4 and/or θ3 (now θ3 is a known variable). Using T ′′(1,4), we have:

T ′′(1,4) = −l1 cos θ3 cos θ4 + l2 sin θ4 ⇔

sin θ4 =
T ′′(1,4) + l2 cos θ3 cos θ4

l3

Now, we focus on T24:

T ′′24 = l2 cos θ4 + l1 cos θ3 sin θ4 ⇔

T ′′24 = l2 cos θ4 + l1 cos θ3

T ′′(1,4) + l2 cos θ3 cos θ4

l3
⇔

cos θ4

(
l22 + l21 cos2 θ3

)
= l3T

′′
(2,4) − l2T ′′(1,4) cos θ3 ⇔

θ4 = ±arccos

(
l3T
′′
(2,4) − l2T ′′(1,4) cos θ3

l22 + l21 cos2 θ3

)
Next we manipulate again our chain. Now bot DH-transformations for θ3 and θ4 can

be removed from the chain so:

T ′′′ = T ′
(
T 3

2

)−1 (
T 4

3

)−1

Now the final two joint values can be easily extract:

θ̂2 = arctan

(
T ′′′(1,2)

T ′′′(2,2)

)

Nikolaos Kofinas 39 July 2012

4. NAO KINEMATICS: THE SOLUTION

θ2 = θ̂2 −
π

2

θ1 = arctan

(
T ′′′(3,1)

T ′′′(3,3)

)
At this point, we have multiple solution sets for all the joints of the left arm, but some of

them may be invalid. We find the correct set(s) through a forward kinematics validation

step. In summary, the final inverse kinematics equations for the left arm chain are:

T ′ =
(
A0

Base

)−1
T
(
AEnd

4

)−1

T ′′ = (T ′)
−1 (

Rz(
π
2
)
)−1

θ3 =

 arcsin
(
T ′′
(3,4)

l1

)
π − arcsin

(
T ′′
(3,4)

l1

)
θ4 = ±arccos

(
l3T
′′
(2,4) − l2T ′′(1,4) cos θ3

l22 + l21 cos2 θ3

)
T ′′′ = T ′

(
T 3

2

)−1 (
T 4

3

)−1

θ2 = arctan

(
T ′′′(2,1)

T ′′′(2,2)

)
− π

2

θ1 = arctan

(
T ′′′(1,3)

T ′′′(3,3)

)

4.2.3 Inverse Kinematics for the Right Arm

The right and left arms are symmetric, thus the solution for the right arm differs only

in the distances along the y-axis and at the “roll” joints (RShoulderRoll, RElbowRoll).

The only basic difference with the distances along the y-axis are with the ElbowOffsetY

that now becomes negative, thus l1 = −ElbowOffsetY.

It is clear that the chain for the right arm is the same as the chain for the left arm.

As we can see, the changes don’t have any impact in the solution given for the left arm,

that is, no denominator becomes zero after these changes. So, according to the previous

section, the final inverse kinematics equations for the right arm chain are:

T ′ =
(
A0

Base

)−1
T
(
AEnd

4

)−1 (
Rz(

π
2
)
)−1

T ′′ = (T ′)
−1

Nikolaos Kofinas 40 July 2012

4.2 Inverse Kinematics for the NAO Robot

θ3 =

 arcsin
(
T ′′
(3,4)

l1

)
π − arcsin

(
T ′′
(3,4)

l1

)
θ4 = ±arccos

(
l3T
′′
(2,4) − l2T ′′(1,4) cos θ3

l22 + l21 cos2 θ3

)
T ′′′ = T ′

(
T 3

2

)−1 (
T 4

3

)−1

θ2 = arctan

(
T ′′′(2,1)

T ′′′(2,2)

)
− π

2

θ1 = arctan

(
T ′′′(1,3)

T ′′′(3,3)

)

4.2.4 Inverse Kinematics for the Left Leg

The kinematic chain of the left leg has six joints, so it is much more difficult to find a solu-

tion. Since the first three joints of the chain (LHipYawPitch, LHipRoll, LHipPitch) have

intersecting axes, the problem is possibly solvable. The symbolic matrix for this chain

is too complicated, therefore in order to simplify it, we remove the known translations

from the kinematic chain:

T = A0
BaseT

1
0 T

2
1 T

3
2 T

4
3 T

5
4 T

6
5Rz(π)Ry(−π

2
)AEnd

6

T̂ =
(
A0

Base

)−1
T
(
AEnd

6

)−1

Now, we have a chain from the base frame of the first joint to the (rotated) frame of the

last joint. The first joint, LHipYawPitch, is by construction rotated by −3π
4

about the

x-axis with respect to the torso frame. We rotate the origin of the chain by π
4

about the

x-axis to make the first joint (LHipYawPitch) a yaw joint (aligned with the z-axis):

T̃ = Rx(
π
4
)T̂

Now, the end effector is the LAnkleRoll joint and the base is the rotated LHipYawPitch

joint. The first four joints (LHipYawPitch, LHipRoll, LHipPitch, LKneePitch) affect

the position and orientation of the end effector and the other two joints (LAnklePitch,

LAnkleRoll) affect only its orientation. It would be convenient, if only three joints were

affecting the position of the end effector, since we operate in the three-dimensional space.

Nikolaos Kofinas 41 July 2012

4. NAO KINEMATICS: THE SOLUTION

Thus, we invert the transformation matrix to form the reverse chain. Now only the

LAnkleRoll, LAnklePitch, and LKneePitch joints affect the position:

T ′ =
(
T̃
)−1

The resulting symbolic matrix is still quite complex, but for now we only need the trans-

lation block, which is relatively simple:

r14 = l2 sin θ5 − l1 sin (θ4 + θ5)

r24 = (l2 cos θ5 + l1 cos (θ4 + θ5)) sin θ6

r34 = (l2 cos θ5 + l1 cos (θ4 + θ5)) cos θ6

where l1 = ThighLength and l2 = TibiaLength. We can now find θ4 the same way we

found θ4 for the arms. We focus on the triangle formed by the leg with ThighLength,

TibiaLength, and the distance from the base to the end effector in the reverse chain as

sides:

d =

√
(sx − p′x)

2 +
(
sy − p′y

)2
+ (sz − p′z)

2

where (sx, sy, sz) = (0, 0, 0) is the new origin and (p′x, p
′
y, p
′
z) = (T ′(1,4), T

′
(2,4), T

′
(3,4)) is the

position of the new target point. Now, we can use the law of cosines to find the interior

angle θ′4 between the thigh and tibia sides of the triangle:

θ′4 = arccos

(
l1

2 + l2
2 − d2

2l1l2

)
Since θ′4 represents an interior angle, whereas the LKneePitch joint is stretched in the

zero position, the resulting angle θ′′4 in this range is computed by:

θ′′4 = π − θ′4

Since the range of the LKneePitch joint includes both positive and negative angles, we

finally extract θ4 as:

θ4 = ±θ′′4

Next, we extract the θ6 angle from the translation block using r24 and r34:

r24

r34

=
p′y
p′z

⇔

Nikolaos Kofinas 42 July 2012

4.2 Inverse Kinematics for the NAO Robot

(l2 cos θ5 + l1 cos (θ4 + θ5)) sin θ6

(l2 cos θ5 + l1 cos (θ4 + θ6)) cos θ6

=
p′y
p′z

⇔

θ6 = arctan

(
p′y
p′z

)
if (l2 cos θ5 + l1 cos (θ4 + θ5)) 6= 0

Since we don’t know θ5, we cannot determine in advance when this solution is valid.

Figure 4.2 shows the locus of the equation l2 cos θ5 + l1 cos (θ4 + θ5) = 0 in the space of

the KneePitch (θ4) and AnklePitch (θ5) joints; in these configurations, which represent

only a fraction of extreme values in the joint space, no unique solution can be extracted

for θ6. Essentially, in these configurations, the position of the end effector of the reverse

chain (the hip joints) falls on the rotation axis of first joint (LAnkleRoll) in the reverse

chain and therefore the LAnkleRoll joint (θ6) has no effect on its position; an infinity

of solutions exists, given that for any choice of θ6, there will be a corresponding set of

choices for the hip joints that achieves the target orientation. In practice, even if one

of these configurations shows up during the solution, a division by zero never occurs,

because the atan2 function in our implementation simply returns a result of 0. We adopt

the solution θ6 = 0, and we relay the problem of the target orientation to the hip joints;

invalid solutions, if any, will be rejected by the validation step.

To move on, we go back to T̃ and we remove the two rotations at the end of the chain

along with the transformation T 6
5 which is now known, because θ6 is known:

T̃ ′ = T̃
(
T 6

5Rz (π)Ry(−π
2
)
)−1

Like before, we form the reverse chain:

T ′′ =
(
T̃ ′
)−1

and we extract the new target position (p′′x, p
′′
y, p
′′
z) = (T ′′(1,4), T

′′
(2,4), T

′′
(3,4)). The translation

block of the new symbolic transformation matrix is:

r14 = l2 cos θ5 + l1 (cos θ5 cos θ4 − sin θ5 sin θ4)

r24 = −l2 sin θ5 − l1 (sin θ5 cos θ4 + cos θ5 sin θ4)

r34 = 0

In these equations, θ5 is the only unknown. From r14, we obtain an expression for cos θ5:

r14 = p′′x ⇔

Nikolaos Kofinas 43 July 2012

4. NAO KINEMATICS: THE SOLUTION

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ankle Pitch

K
n
e
e
 P

it
c
h

Locus

Figure 4.2: Locus of leg configurations corresponding to non-unique solutions to θ6

(l2 + l1 cos θ4) cos θ5 = p′′x + l1 sin θ5 sin θ4 ⇔

cos θ5 =
p′′x + l1 sin θ5 sin θ4

l2 + l1 cos θ4

if l2 + l1 cos θ4 6= 0

Given the lengths of the links of the robot, the denominator l2 + l1 cos θ4 becomes zero,

only if cos θ4 = −1.029, which is impossible, since | cos θ4| ≤ 1. We continue with r24:

sin θ5 (−l2 − l1 cos θ4)− l1 cos θ5 sin θ4 = p′′y ⇔

sin θ5 (−l2 − l1 cos θ4)− l1
p′′x + l1 sin θ5 sin θ4

l2 + l1 cos θ4

sin θ4 = p′′y ⇔

− sin θ5 (l2 + l1 cos θ4)−
l1p
′′
x sin θ4

l2 + l1 cos θ4

−
l1

2 sin θ5 sin2 θ4

l2 + l1 cos θ4

= p′′y ⇔

− sin θ5 (l2 + l1 cos θ4)2 − l12 sin θ5 sin2 θ4 = p′′y (l2 + l1 cos θ4) + l1p
′′
x sin θ4 ⇔

θ5 = arcsin

(
−
p′′y (l2 + l1 cos θ4) + l1p

′′
x sin θ4

l1
2 sin2 θ4 + (l2 + l1 cos θ4)2

)

Nikolaos Kofinas 44 July 2012

4.2 Inverse Kinematics for the NAO Robot

The division is always feasible, because l1
2 sin2 θ4 + (l2 + l1 cos θ4)2 is obviously greater

than zero for any value of θ4. Now, we can go back to T̃ ′ and remove the two transfor-

mations T 4
3 and T 5

4 , since θ4 and θ5 are known:

T ′′′ = T̃ ′
(
T 4

3 T
5
4

)−1

The translation block in the transformation T ′′′ must be zero, because the only joints

left are the three hip joints, which only affect the orientation. The rotation block of the

transformation is:

r11 = cos θ̂1 cos θ̂2 cos θ4 − sin θ̂1 sin θ3

r12 = − cos θ3 sin θ̂1 − cos θ̂1 cos θ̂2 sin θ3

r13 = cos θ̂1 sin θ̂2

r21 = − cos θ3 sin θ̂2

r22 = sin θ̂2 sin θ3

r23 = cos θ̂2

r31 = − cos θ̂2 cos θ3 sin θ̂1 − cos θ̂1 sin θ3

r32 = − cos θ̂1 cos θ3 + cos θ̂2 sin θ̂1 sin θ3

r33 = − sin θ̂1 sin θ̂2

where θ̂1 is the DH parameter θ for the first (LHipYawPitch) joint and θ̂2 is the DH

parameter θ for the second (LHipRoll) joint. Now, we can extract the remaining three

angles as follows:

θ̂2 = arccosT ′′′(2,3)

θ2 = θ̂2 −
π

4

θ3 = arcsin

(
T ′′′(2,2)

sin
(
θ2 + π

4

))

θ̂1 = arccos

(
T ′′′(1,3)

sin
(
θ2 + π

4

))

θ1 = θ̂1 +
π

2

Nikolaos Kofinas 45 July 2012

4. NAO KINEMATICS: THE SOLUTION

The equations above are valid, because by the robot construction the LHipRoll joint (θ2)

cannot reach −π
4

or 3π
4

and therefore the denominator sin
(
θ2 + π

4

)
never becomes zero.

In summary, the equations of inverse kinematics for the left leg are:

T ′ =
(
Rx(

π
4
)
((
A0

Base

)−1
T
(
AEnd

6

)−1
))−1

θ4 = ±

π − arccos


l1

2 + l2
2 −

√(
0− T ′(1,4)

)2

+
(

0− T ′(2,4)

)2

+
(

0− T ′(3,4)

)2
2

2l1l2




θ6 = arctan

(
T ′(2,4)

T ′(3,4)

)
if (l2 cos θ5 + l1 cos (θ4 + θ5)) 6= 0

θ6 = 0 if (l2 cos θ5 + l1 cos (θ4 + θ5)) = 0

T ′′ =
(

(T ′)
−1 (

T 6
5Rz (π)Ry(−π

2
)
)−1
)−1

θ5 = arcsin

(
−
T ′′(2,4) (l2 + l1 cos θ4) + l1T

′′
(1,4) sin θ4

l1
2 sin2 θ4 + (l2 + l1 cos θ4)

)

θ5 = π − arcsin

(
−
T ′′(2,4) (l2 + l1 cos θ4) + l1T

′′
(1,4) sin θ4

l1
2 sin2 θ4 + (l2 + l1 cos θ4)

)
T ′′′ = (T ′′)

−1 (
T 4

3 T
5
4

)−1

θ2 = ± arccos
(
T ′′′(2,3)

)
−
π

4

θ3 = arcsin

(
T ′′′(2,2)

sin
(
θ2 + π

4

))

θ3 = π − arcsin

(
T ′′′(2,2)

sin
(
θ2 + π

4

))

θ1 = ± arccos

(
T ′′′(1,3)

sin
(
θ2 + π

4

))+
π

2

4.2.5 Inverse Kinematics for the Right Leg

The chains of the two legs are symmetric, so the solution for the right leg will be quite

similar to the solution for the left leg. The only difference is in the rotation matrix for

Nikolaos Kofinas 46 July 2012

4.2 Inverse Kinematics for the NAO Robot

the RHipYawPitch joint, which must be rotated by −π
4
.

T = A0
BaseT

1
0 T

2
1 T

3
2 T

4
3 T

5
4 T

6
5Rz(π)Ry(−π

2
)AEnd

6

T̂ =
(
A0

Base

)−1
T
(
AEnd

6

)−1

T̃ = Rx(−π
4
)T̂

T ′ =
(
T̃
)−1

Besides this change, all the steps followed to reach a solution for the left leg apply without

change to the right leg as well.

Therefore, the equations of inverse kinematics for the right leg are:

T ′ =
(
Rx(−π

4
)
((
A0

Base

)−1
T
(
AEnd

6

)−1
))−1

θ4 = ±

π − arccos


l1

2 + l2
2 −

√(
0− T ′(1,4)

)2

+
(

0− T ′(2,4)

)2

+
(

0− T ′(3,4)

)2
2

2l1l2




θ6 = arctan

(
T ′(2,4)

T ′(3,4)

)
if (l2 cos θ5 + l1 cos (θ4 + θ5)) 6= 0

θ6 = 0 if (l2 cos θ5 + l1 cos (θ4 + θ5)) = 0

T ′′ =
(

(T ′)
−1 (

T 6
5Rz (π)Ry(−π

2
)
)−1
)−1

θ5 = arcsin

(
−
T ′′(2,4) (l2 + l1 cos θ4) + l1T

′′
(1,4) sin θ4

l1
2 sin2 θ4 + (l2 + l1 cos θ4)

)

θ5 = π − arcsin

(
−
T ′′(2,4) (l2 + l1 cos θ4) + l1T

′′
(1,4) sin θ4

l1
2 sin2 θ4 + (l2 + l1 cos θ4)

)
T ′′′ = (T ′′)

−1 (
T 4

3 T
5
4

)−1

θ2 = ± arccos
(
T ′′′(2,3)

)
+
π

4

θ3 = arcsin

(
T ′′′(2,2)

sin
(
θ2 − π

4

))

θ3 = π − arcsin

(
T ′′′(2,2)

sin
(
θ2 − π

4

))

Nikolaos Kofinas 47 July 2012

4. NAO KINEMATICS: THE SOLUTION

θ1 = ± arccos

(
T ′′′(1c,3)

sin
(
θ2 − π

4

))+
π

2

4.3 Implementation

Having completed all forward and inverse kinematics in analytical form, our next goal

is to integrate them in the code of our RoboCup team for real-time, on-board execution

on the NAO robot. The software architecture and the entire code of the team is written

in C++. Given that C++ offers no library for optimized real-time matrix operations, we

relied on KMat, a minimalistic framework for such operations. Using this framework, it

was fairly easy to implement our own kinematics library in C++, which includes functions

that implement all equations of forward and inverse kinematics for the NAO robot.

4.3.1 KMat: Kouretes Math Library

KMat is a library developed by Emmanouil Orfanoudakis [?] that supports a selected

subset of algebraic matrix operations. The focus of the library is mainly on real num-

ber operations and the primary goal of KMat is low memory footprint and calculation

efficiency. Existing linear algebra libraries typically perform run-time validation for the

compatibility of the operands and are optimized for large matrices. On the other hand,

KMat is optimized for small matrices (typically 3 × 3 or 4 × 4) and supports only a se-

lected subset of operations (addition, subtraction, multiplication, scalar addition, scalar

multiplication, transposition, inversion). KMat is optimized for and supports two type

of matrices: dense matrices and affine transformation matrices.

In our own work, we mainly used the functions offered for affine transformation ma-

trices. In addition, we expanded the library with functionality that is extremely useful

in the context of kinematics. These functions include matrix initialization given a set of

DH parameters, construction of the transformation matrix for a given target point, etc.

4.3.2 Nao Kinematics C++ Library

We created two libraries, ForwardKinematics and InverseKinematics, for NAO kine-

matics in C++. ForwardKinematics includes functions for calculating the point (position

and orientation) of an end effector of a kinematic chain, given the joint values for this

Nikolaos Kofinas 48 July 2012

4.3 Implementation

chain. The input to each of these functions is a list of values for the joints in the order

they appear in corresponding kinematic chain. The output is a list of six numbers, the

three Cartesian coordinates of the position and the three Euler angles for the orientation.

The combination of independent chains with a common base frame is also possible, so

that one can find, for example, the position and orientation of the top camera relatively

to one of the legs. This library also includes a function for calculating the center of mass

of the robot given a set of values for all joints.

The InverseKinematics library includes five functions, each of which solves the

problem for one of the five kinematic chains. All functions take as input the position

and the orientation of the desired target point and the output is a list of solutions, where

each solution includes values for all the joints of the chain. Although multiple solutions

are rare, all solutions found are returned so that the user can decide which one to use.

A practical issue in inverse kinematics may have to be resolved manually, if it comes

up. The two legs of the NAO robot have one common joint (HipYawPitch), therefore, if

a user gives two target points, one for each leg, inverse kinematics for the left leg may

return a different value for this joint than the inverse kinematics for the right leg. The

user must decide which value to use to set the HipYawPitch joint. One choice is to give

priority to the value returned by the leg that currently acts as support leg (the one on

which the robot stands at the moment). Another choice is to set the joint to the mean

of the two values. None of these choices is perfect, however it is likely that in a carefully-

designed trajectory the resulting values from inverse kinematics for this joint will be close

enough and the end result will be close to the desired one, independently of the user’s

choice.

Nikolaos Kofinas 49 July 2012

4. NAO KINEMATICS: THE SOLUTION

Nikolaos Kofinas 50 July 2012

Chapter 5

NAO Kinematics: The Results

There are several ways to validate solutions to forward and inverse kinematics and verify

that the method used works properly. The verification of forward kinematics is trivial;

we just move the end effector of a kinematic chain to a point and we check if forward

kinematics returns the correct position and orientation. On the other hand, verification

of inverse kinematics is more difficult, because we must give a valid (accessible) target

point as input, otherwise inverse kinematics cannot find a solution.

A practical problem is there is no clear way to know the exact work space for the

end effectors of NAO. Therefore, we came up with another way of verifying our solution.

We manually move an end effector to a random point, we read off the position and the

orientation of this point from the forward kinematics, and then we assign this point as

the target point for inverse kinematics. Finally, we check if inverse kinematics finds a

solution and we know right away that this solution is correct, because the solution is

check through forward kinematics against the given target point before returned.

We created two demonstrations to show the effectiveness and the efficiency of our

kinematics in the real world. The first demonstration is a pointing-to-the-ball task,

whereby a standing robot tracks a ball in the field and uses forward kinematics of the

legs and inverse kinematics of the arms to point to the exact location of the ball with

its extended arm(s). The second demonstration is more complicated and consists of a

simple balancing method, whereby the robot calculates its current center of mass through

forward kinematics and drives one of its legs to the projection of the center of mass on

the floor using inverse kinematics to maintain balance.

Nikolaos Kofinas 51 July 2012

5. NAO KINEMATICS: THE RESULTS

Table 5.1: On-board execution times of the NAO kinematics library

Kinematics Function Time (us)

Forward Kinematics for Head 54.28

Forward Kinematics for Left Arm 66.72

Forward Kinematics for Right Arm 69.54

Forward Kinematics for Left Leg 80.88

Forward Kinematics for Right Leg 80.78

Inverse Kinematics for Head 70.79

Inverse Kinematics for Left Arm 170.55

Inverse Kinematics for Right Arm 200.00

Inverse Kinematics for Left Leg 185.29

Inverse Kinematics for Right Leg 184.85

Calculation of the Center of Mass 394.55

5.1 Real-Time Performance

One of the goals of this work was to implement a software library for real-time kinematics

computations on the robot. We measured the performance of our implementation for each

of the functions we offer. Table 5.1 shows average execution times for each function in

microseconds (us). Averages were taken over 6000 measurements of execution time on

the robot CPU. Unfortunately, we cannot compare these times with Aldebaran’s solution

execution time, because we no access inside the proprietary NaoQi middleware.

5.2 Locus of Problematic Inverse Kinematics

As mentioned in Section 4.2.4, there are a few target points for the legs which lead to an

infinity of solutions for the AnkleRoll joints, while the KneePitch and AnklePitch joints

take specific values. Even though this is not a problem, to verify that in practice the robot

never reaches any of these configurations, we let the robot perform the entire range of

motions available to it during operation in a RoboCup field (walk, kicks, stand-up, etc.).

We recorded all configurations encountered in the KneePitch and AnklePitch subspace

Nikolaos Kofinas 52 July 2012

5.2 Locus of Problematic Inverse Kinematics

of both legs and we plotted these configurations alongside the locus of the problematic

configurations. The results are shown in Figure 5.1. It is clear that no motion brought the

robot to these configurations. In practice, it is rather unlike that anyone will consistently

give target points that drive the joints in that area. This is true, because, when executing

a trajectory, inverse kinematics are called on a sequence of target points (at a frequency

of 50 to 100 Hz), so even if one of them falls right into the problematic fraction of the

three-dimensional space, it is highly unlike that the next one will do the same. At such

a high frequency, the problematic solution will go unnoticed and the motion will proceed

smoothly.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ankle Pitch

K
n
e
e
 P

it
c
h

Locus

Left Leg

Right Leg

Figure 5.1: Trajectories of motion in a subspace of the leg joints

Nikolaos Kofinas 53 July 2012

5. NAO KINEMATICS: THE RESULTS

Figure 5.2: Pointing to the ball with the NAO using forward and inverse kinematics

5.3 Demonstration I: Pointing to the Ball

In the first demonstration, our goal is to make the NAO point to the ball with its stretched

arms. Apart from the kinematics, to realize this task we employed the KVision module [?]

for ball recognition of the Kouretes team, along with the module that updates the local

world state belief of the robot. Initially, NAO searches for the ball by scanning the field

with its head. When it finds the ball, it points directly to the ball with the left, the right,

or both arms, depending on where the ball is located (left, right, or front). Thanks to

the filtering of the world state module, if NAO loses momentarily the ball from its visual

field, it can continue pointing to the location indicated by the ball model.

The ball observation can be described as a two-dimensional point without orienta-

tion. The location of the ball is given in polar coordinates, that is distance and bearing

relatively to the projection of the robot torso on the floor. We must now transform this

point from the two dimensions to the three dimensions and give it an orientation. To

do so, we transform the polar coordinates to Cartesian coordinates (px, py) and we add

the height of the torso as the third coordinate pz to form the ball position (px, py, pz) in

the three-dimensional space. We also know that ax equals to zero, because we are only

rotating about the y-axis (up/down) and the z-axis (right/left). To find the two other

orientations, we focus on the straight line that connects the position of the ball and the

position of the ShoulderPitch joint relatively to the torso frame. The orientation ay is

the angle between this line and the y-axis and the orientation az is the angle between

Nikolaos Kofinas 54 July 2012

5.4 Demonstration II: Basic CoM Balancing

Figure 5.3: Pointing to the ball at SPL Open Challenge Competition of RoboCup 2012

this line and the z-axis. Additionally, the position of the target point lies along this line

at a distance d from the ShoulderPitch joint, where d is the total length of the stretched

arm. We need to set the target point at that distance to make it a valid target point

for inverse kinematics. We run this procedure twice, once for each arm (the difference is

the position of the corresponding ShoulderPitch joints), and finally obtain the solution(s)

from inverse kinematics for the left and right arms for the corresponding target points.

If both solutions are returned, the robot raises both arms pointing to the ball. If only

one solution is returned, the robot raises only one arm; the other arm cannot point to

the ball, as it is not possible to reach the correct target point due to physical constraints.

Figure 5.2 shows snapshots from this demonstration.

This demonstration was presented by team Kouretes at the SPL Open Challenge

Competition at RoboCup 2012 in Mexico City, Mexico. Figure 5.3 shows a picture taken

during the open challenge presentation.

5.4 Demonstration II: Basic CoM Balancing

In the second demonstration, we seek to implement a very basic balancing method. In

particular, we want to make NAO move one of its feet to the point of the projection of the

CoM on the floor. First, we calculate the position of the CoM using forward kinematics,

Nikolaos Kofinas 55 July 2012

5. NAO KINEMATICS: THE RESULTS

Figure 5.4: Basic balancing for the NAO using the projection of the center of mass

which gives the CoM position relatively to the torso frame. The problem is that the x-y

plane of the torso frame is rarely parallel to the floor. Thus, we read off the inertial unit

of the robot the current rotation (angleX and angleY) of the torso plane. Now, we can

calculate the position of the CoM relatively to the rotated torso:

Trotated = Ry(angleY)Rx(angleX)ACoM

Then, we assign a custom value to pz in T(4,3), which represents the desired torso height

from the floor, so, and that yields Trotated′ . Now we must rotate back to the torso frame:

Tfinal =
(
Ry(angleY)Rx(angleX)

)−1
Trotated′

Finally, we extract px, py, and pz from Tfinal and we set (px, py, pz) as the target position for

inverse kinematics. The target orientation is set to (ax, ay, az) = (−angleX,−angleY, 0),

because we do not care about the rotation around the z-axis.

Figure 5.4 shows snapshots from this demonstration. Note that the foot is always

parallel to the floor. It happens some times, that some robots have displaced inertial

unit (accelerometers and gyro-meters). On these robots the foot is not parallel to the

floor, but this represents a hardware problem, not a kinematics problem.

Nikolaos Kofinas 56 July 2012

Chapter 6

Conclusion

Kinematics is the base for several applications related to robot motion. Our approach to

NAO kinematics is based on standard principled methods for studying robot kinematic

chains. Nevertheless, no complete analytical solution for the NAO robot had been pub-

lished before. Our work offers such a complete analytical solution, which we expect will

be useful not only to RoboCup SPL teams, but also to any NAO software developer.

6.1 Future Work

The work in this thesis can be used as the base for a several future research directions,

some of which are listed below. It is also a step towards making the software architecture

of our team independent from Aldebaran’s development framework.

Omni-Directional Walk

The ability of a robot to walk towards any desired direction is called omni-directional

walk. The feet (and arms) trajectories in omni-directional walk engines are being cal-

culated dynamically and for this reason an inverse kinematics mechanism is more than

necessary for the robot to be able to follow them.

Dynamic Balancing

As the robot walks, kicks, or performs any kind of motion, it must maintain its balance.

Knowledge of the position of the center of mass at all times is more than necessary for

Nikolaos Kofinas 57 July 2012

6. CONCLUSION

successful balancing.

Kick Engine

Currently, our team relies only on static predefined kicks designed. The problem with

those kicks is that they cannot absorb random disturbances and quite often robots ex-

ecuting them fall down. With inverse kinematics and balancing in place, the team can

develop a dynamic kick engine, which takes care of balancing the robot on one leg, while

following a dynamic kick trajectory based on the ball’s position with the other leg.

Nikolaos Kofinas 58 July 2012

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 Background
	2.1 RoboCup
	2.1.1 Standard Platform League
	2.1.2 Robocup SPL Team Kouretes

	2.2 Aldebaran NAO Humanoid Robot
	2.3 Robot Kinematics
	2.3.1 Forward Kinematics
	2.3.2 Inverse Kinematics

	2.4 Affine Transformations
	2.5 Denavit-Hartenberg (DH) Parameters
	2.6 Mathematica

	3 NAO Kinematics: The Problem
	3.1 NAO Robot Specifications
	3.2 The Kinematics Problem for NAO
	3.2.1 The Forward Kinematics Problem for NAO
	3.2.2 The Inverse Kinematics Problem for NAO

	3.3 Related Work
	3.3.1 Aldebaran Robotics
	3.3.2 B-Human Inverse Kinematics Solution
	3.3.3 QIAU Inverse Kinematics Solution

	4 NAO Kinematics: The Solution
	4.1 Forward Kinematics for the NAO Robot
	4.1.1 Forward Kinematics for the Head
	4.1.2 Forward Kinematics for the Left Arm
	4.1.3 Forward Kinematics for the Right Arm
	4.1.4 Forward Kinematics for the Left Leg
	4.1.5 Forward Kinematics for the Right Leg
	4.1.6 Forward Kinematics for Combined Chains
	4.1.7 Calculation of the Center Of Mass

	4.2 Inverse Kinematics for the NAO Robot
	4.2.1 Inverse Kinematics for the Head
	4.2.2 Inverse Kinematics for the Left Arm
	4.2.3 Inverse Kinematics for the Right Arm
	4.2.4 Inverse Kinematics for the Left Leg
	4.2.5 Inverse Kinematics for the Right Leg

	4.3 Implementation
	4.3.1 KMat: Kouretes Math Library
	4.3.2 Nao Kinematics C++ Library

	5 NAO Kinematics: The Results
	5.1 Real-Time Performance
	5.2 Locus of Problematic Inverse Kinematics
	5.3 Demonstration I: Pointing to the Ball
	5.4 Demonstration II: Basic CoM Balancing

	6 Conclusion
	6.1 Future Work

