
- 1. Disegna lo schema del sommatore non invertente (con 2 IN) e scegli le R in modo da avere $v_{out} = 3 (v_A + v_B)$
- 2. Dato il seguente schema circuitale dell' A.O.:
 - a) Che configurazione è?
 - **b**) Determina 1'espressione matematica di v_{out} (t)

con:

$$v_A(t) = 2 \sin(2\pi 1000 t)$$
 [V] $V_B = 0.5$ [V]_{dc}

- c) grafico di v_{out} (t)
- d) Modifica il valore delle R in modo da

ottenere
$$v_{out} = 5 [v_A(t) - V_B]$$

3. Amplificatore invertente di tensione con :

$$\mid A_f \mid = 26 \; [dB]$$
 $R_1 = 10 \; [K\Omega]$ $Vcc = \pm 12 \; [V]$

$$V_{in}(t)$$
 sinusoidale con $V_{MAX} = 200 [mV]$ $T = 10 [ms]$

- a) Disegna lo schema b) determina R_f c) scrivi le espressioni di v_{in} e v_{out} d) grafici di v_{in} e v_{out}
- 4. Decibel

Rapporti di tensione	Valori in dB
1	
0,1	
2	
500	

Rapporti di tensione	Valori in dB
	40
	46
	- 34
	18

5. Condizionamento di un segnale :

un trasduttore fornisce un segnale analogico di **corrente**, con range variabile tra $150~e~300~[\mu A]$ (scegliere una forma a piacere)

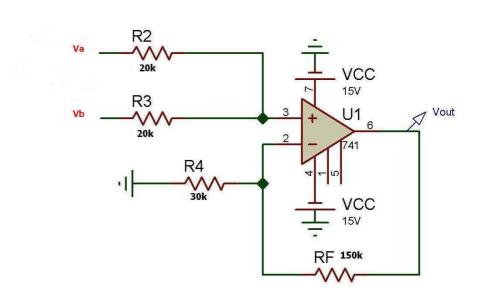
si vuole ottenere un segnale di **tensione** con range $0 \div 10$ [V];

- a) progettare un circuito a due stadi invertenti
- b) progettare un circuito a due stadi non invertenti

fornire commenti, spiegazioni, calcoli, grafici per ogni circuito e ogni stadio.

VALUTAZIONE COGNOME

•	NO	ME	•••	••	•••	••	••	• •	•	••	• •	•	••	•	• •	•	•


	BASE	1	2a	2b	2c	2d	3a	3b	3c	3d	4	5a	5b	TOT	VOTO
Pt	20	10	5	5	5	5	5	5	5	5	10	10	10	100	10/10
max															
Pt	20														
acq															

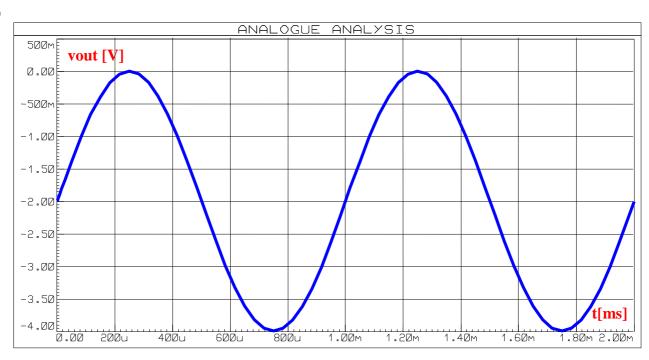
SOLUZIONE

1. Sommatore non invertente

Con questi valori,

$$\mathbf{v_{out}} = (\mathbf{v_a} + \mathbf{v_b})^* \frac{1}{2} * (1+150/30) =$$

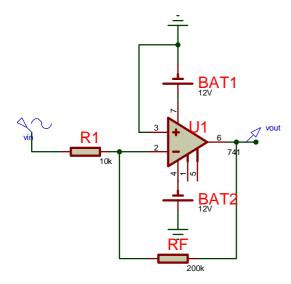
= 3 (\mathbf{v_a} + \mathbf{v_b})



2. a) Ampli differenziale

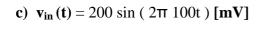
b)
$$v_{out}(t) = v_A(t) * 10/50 * (1 + 40/10) + V_B * (-4) =$$

 $= 2 \sin(2\pi 1000 t) - 2 [V]$

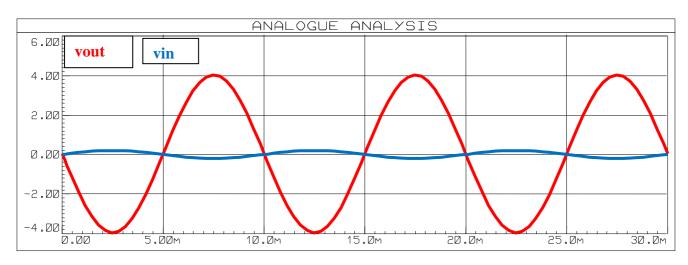

c)

d) R uguali a coppie es :
$$R1 = R3 = 10 \text{ K}$$

 $R2 = R4 = 50 \text{ K}$


3. Amplificatore invertente di tensione

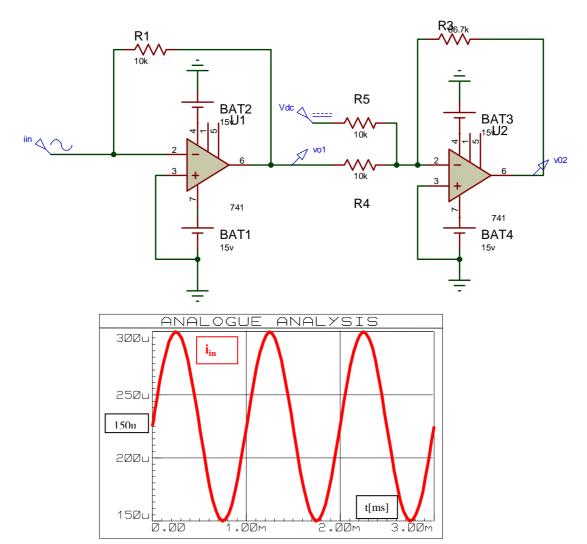
a)


es:
$$R1 = 10 \text{ K}$$

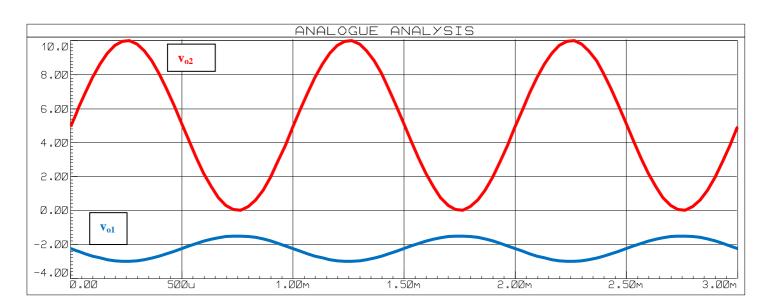
$$Rf = 200 K$$

$$\mathbf{v_{out}}(\mathbf{t}) = -4 \sin(2\pi \ 100 t)$$
 [V]

d)

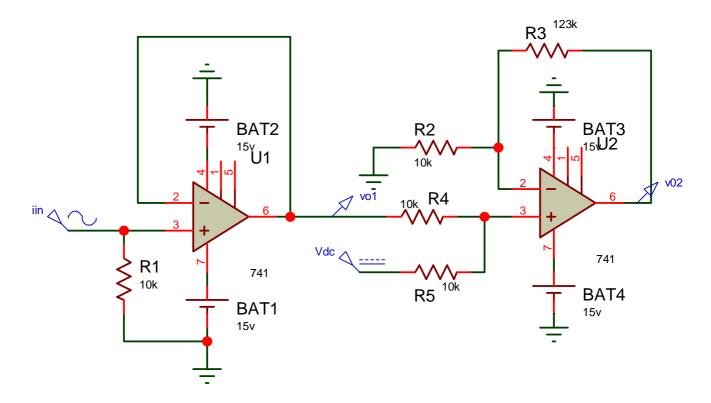


4. Decibel


Rapporti di tensione	Valori in dB
1	0
0,1	-20
2	6
500	54

Rapporti di tensione	Valori in dB
100	40
200	46
0,02	- 34
8	18

5. a) circuito di condizionamento a due stadi invertenti


 $i_{in}(t) = 75sin(2\pi1000t) + 225~[\mu A]$

$$v_{01}(t) = \text{-} \ i_{in}(t) * Rf = \text{-} \ 0.75 \ sin(2\pi 1000t) - 2.25 \quad [V] \\ \text{Vdc} = \text{1.5} \ [V]$$

$$v_{02}(t) = 5 \, sin(2\pi 1000t) + 5 \quad [V]$$

5. b) circuito di condizionamento a due stadi non invertenti

$$v_{01}(t) = i_{in}(t) * Rf = 0.75 \sin(2\pi 1000t) + 2.25$$
 [V]
$$Vdc = -1.5$$
 [V]

 $v_{02}(t) = 5 \sin(2\pi 1000t) + 5$ [V]

- Il range di v₀₁(t) va da 1,5 a 3 [V]
- Per eliminare l'offset basta sommare a v_{01} una tensione continua pari a 1,5 [V] , per cui il range di ($v_{01}(t)$ + Vdc) va da 0 a 1,5 [V]
- Il guadagno del sommatore non invertente è dato da $\frac{1}{2}$ * (1 + R3 / R2) e dev'essere pari a 10/1,5 = 6,67 per cui (1 + R3 / R2) = 13,3 e R3 / R2 = 12,3

Es:
$$R2 = 10 \text{ K}$$
 $R3 = 123 \text{ K}$