ANALISI IN FREQUENZA DI FILTRI PASSIVI DEL I° ORDINE

Sono stati analizzati singolarmente i comportamenti, al variare della frequenza, dei filtri passivi del I° ordine realizzati rispettivamente con reti RC (passa-basso) e CR (passa-alto), considerate come quadripoli. Il lavoro è stato condotto utilizzando il software di simulazione ISIS 6 Professional.

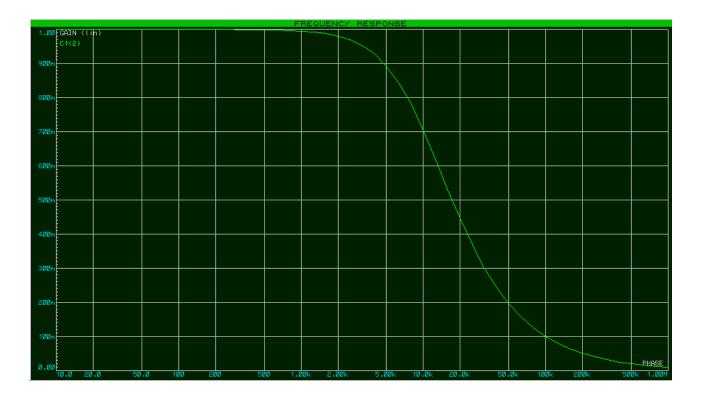
Il procedimento generale seguito per gli studi dei due filtri è così riassumibile:

- determinazione dell'espressione cartesiana, del modulo e della fase della funzione di trasferimento (FdT) $\overline{G}(j\omega)$ del filtro, tramite il "metodo delle impedenze";
- impostazione della pulsazione di taglio (dalla quale la frequenza di taglio) del filtro;
- fissando un valore arbitrario di capacità del condensatore, determinazione del valore di resistenza del resistore;
- simulazione del comportamento dei filtri e tracciamento dei diagrammi di modulo e fase di ciascuno di essi. Per il diagramma del modulo, sono state utilizzate sia la scala lineare sia la scala logaritmica, suddividendo i valori di frequenza in decadi.

Analisi filtro passivo RC

Lo schema circuitale del filtro è il seguente:

$$G(jw) = 1/(1+jwRC)$$


$$|G(jw)| = 1/sqrt(1+(wRC)^2)$$

$$wt = 1/RC --> ft = 1/2piRC = 3[kHz]$$

Nella figura, appaiono l'espressione cartesiana, del modulo e della fase della FdT del filtro (sono stati omessi i passaggi intermedi per ricavarla).

I diagrammi di modulo e fase sono i seguenti:

Diagramma del modulo in scala lineare

Analizzando il grafico si osserva che:

- per valori di frequenza inferiori alla frequenza di taglio (f < 3 [kHz]), le componenti del segnale
 d'ingresso vengono poco attenuate;
- in prossimità della frequenza di taglio (f → 3 [kHz]) è situato l'inizio del "declivio" significativo del guadagno (→ aumento dell'attenuazione);
- per valori di frequenza superiori alla frequenza di taglio (f > 3 [kHz]), le componenti del segnale d'ingresso vengono attenuate di molto, fino alla quasi totalità (la curva del guadagno assume andamento asintotico sul semiasse positivo delle frequenze).

Diagramma del modulo in scala semilogaritmica

In questo grafico, il guadagno è espresso in [dB], ossia in unità logaritmiche. Il guadagno in [dB], noto il guadagno in scala lineare, è ricavabile mediante la formula

$$|G(j\omega)|_{dB} = 20Log(|G(j\omega)|)$$

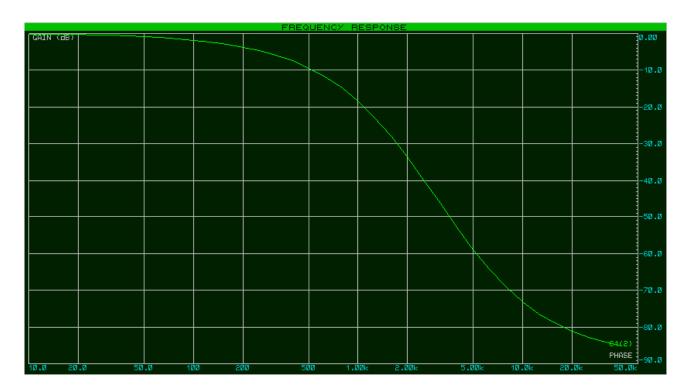
Se invece si dispone già del valore del guadagno espresso in [dB], per ricavare il guadagno "lineare" si adopera la formula

$$|G(j\omega)| = 10^{\frac{|G(j\omega)|_{dB}}{20}}$$

Analizzando il grafico si osserva che:

- per valori di frequenza inferiori alla frequenza di taglio (f < 3 [kHz]), le componenti del segnale d'ingresso vengono poco attenuate (0[dB] ↔ 1);
- in prossimità della frequenza di taglio (f → 3 [kHz]) è situato l'inizio del "declivio" del guadagno (attenuazione di -3[dB] sul guadagno in banda passante);
- per valori di frequenza superiori alla frequenza di taglio (f > 3 [kHz]), le componenti del segnale d'ingresso vengono attenuate di molto, fino alla quasi totalità (l'attenuazione assume

valori sempre più grandi in valore assoluto → ciò corrisponde, in scala lineare, a un guadagno tendente a zero).


Osservando l'andamento del guadagno decade per decade, partendo dalla frequenza di taglio **ft** e proseguendo per valori sempre maggiori,

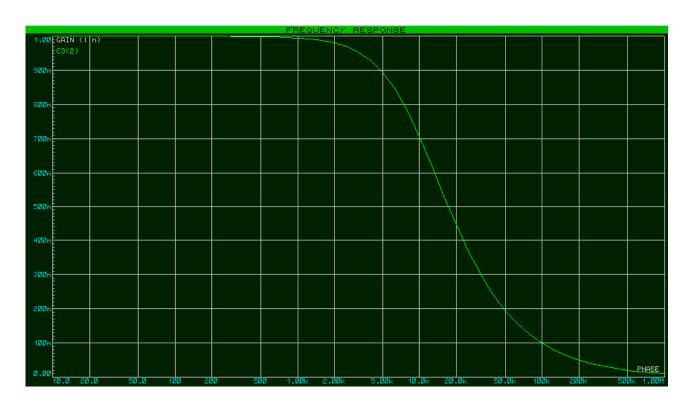
$$|G(j\omega)|_{dB} = -20[dB]$$
 (prima decade dopo ft)

$$|G(j\omega)|_{dB} = -40[dB]$$
 (seconda decade dopo ft)

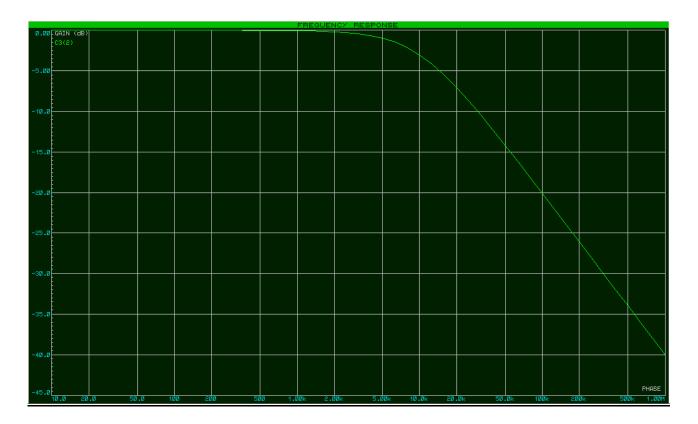
si nota che (osservando anche il grafico) l'attenuazione aumenta in modo lineare di 20 [dB]/decade (oppure di 6[dB]/ottava). Ciò basta per affermare che il filtro in questione è un filtro passa-basso del l° ordine.

Diagramma della fase

Esaminando il grafico, si osserva che:


- per valori di frequenza inferiori alla frequenza di taglio (f < 3 [kHz]), la fase tende ad assumer valori nulli;
- in prossimità della frequenza di taglio (f → 3 [kHz]) è situato l'inizio del "declivio" della fase
 (alla frequenza di taglio si registra una fase di -45°);

 per valori di frequenza superiori alla frequenza di taglio (f > 3 [kHz]), la fase assume un andamento asintotico sui -90°.


Per variare la frequenza di taglio (ad esempio a 10 [kHz]), potrei solamente cambiare il valore di resistenza del resistore ma, facendo i conti, verrebbe un valore di resistenza molto basso (circa 16R). Scelgo dunque di cambiare anche il valore di capacità del condensatore, ponendola arbitrariamente a 10 [nF]. In base alle formule note, partendo dalla frequenza di taglio, ottengo un valore di resistenza pari a $1.6 \, [k\Omega]$.

Coi nuovi valori di capacità e resistenza, i diagrammi si presentano così (le considerazioni fattibili sono analoghe a quelle avanzate per il caso precedente; cambia solamente il valore della frequenza di taglio e tutto ciò che ne deriva):

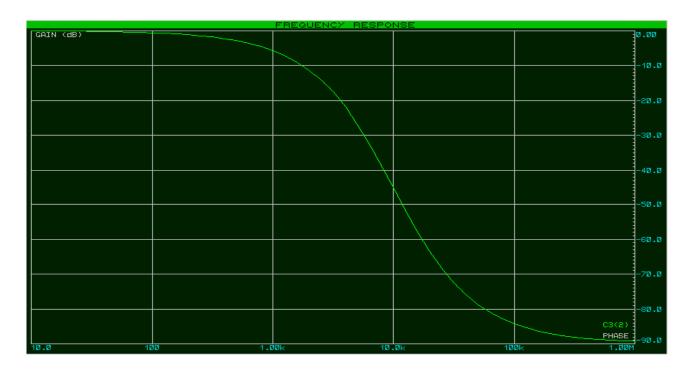
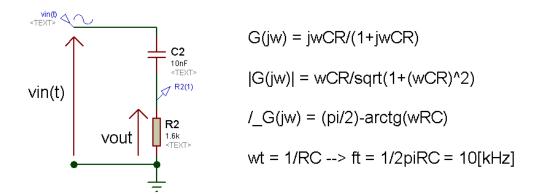

Diagramma in scala lineare

Diagramma in scala semilogaritmica

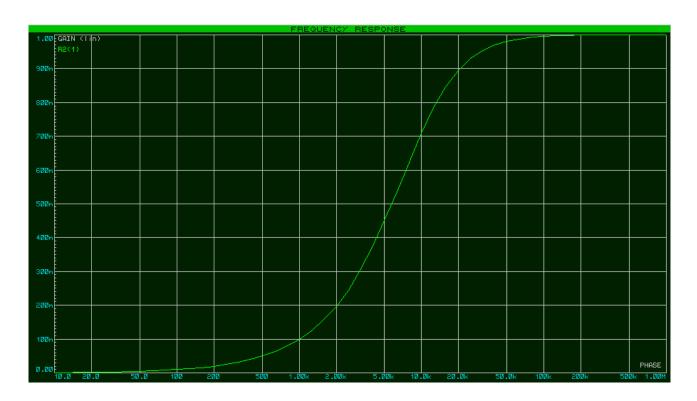
Diagramma della fase



Riassumendo le considerazioni avanzate considerando il comportamento del filtro in funzione della frequenza (in entrambi i casi, andando a variare anche il valore della frequenza di taglio e in particolare riguardo al modulo della FdT), si può affermare che il filtro in esame è un **passa-basso**,

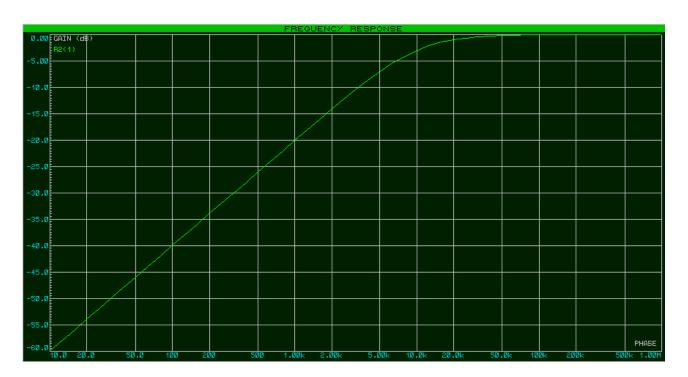
poiché attenua maggiormente le componenti del segnale d'ingresso aventi valori di frequenza maggiori della frequenza di taglio.

Analisi del filtro passivo CR


Lo schema circuitale è il seguente:

Nella figura, appaiono l'espressione cartesiana, del modulo e della fase della FdT del filtro (sono stati omessi i passaggi intermedi per ricavarla).

I diagrammi sono i seguenti:


Diagramma del modulo in scala lineare

Dall'osservazione di questo diagramma, si evince che:

- per valori di frequenza inferiori alla frequenza di taglio (f < 10 [kHz]), le componenti del segnale d'ingresso sono molto attenuate, a tal punto che il guadagno in banda passante tende a zero;
- in prossimità della frequenza di taglio (f → 10 [kHz]), il guadagno inizia a crescere significativamente (→ diminuzione dell'attenuazione);
- per valori di frequenza superiori alla frequenza di taglio (f > 10 [kHz]), il guadagno assume un valore che tende al valore massimo: ciò vale a dire che le componenti del segnale d'ingresso assumenti tali valori di frequenza sono poco attenuate.

Diagramma del modulo in scala semilogaritmica

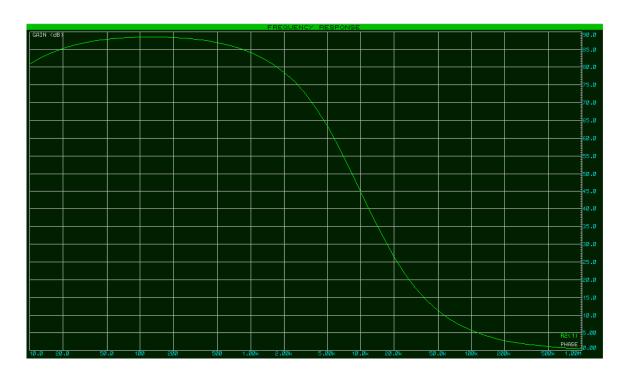
In questo grafico, il guadagno è espresso in [dB], ossia in unità logaritmiche. Il guadagno in [dB], noto il guadagno in scala lineare, è ricavabile mediante la formula

$$|G(j\omega)|_{dB} = 20Log(|G(j\omega)|)$$

Se invece si dispone già del valore del guadagno espresso in [dB], per ricavare il guadagno "lineare" si adopera la formula

$$|G(j\omega)| = 10^{\frac{|G(j\omega)|_{dB}}{20}}$$

Si può osservare che:

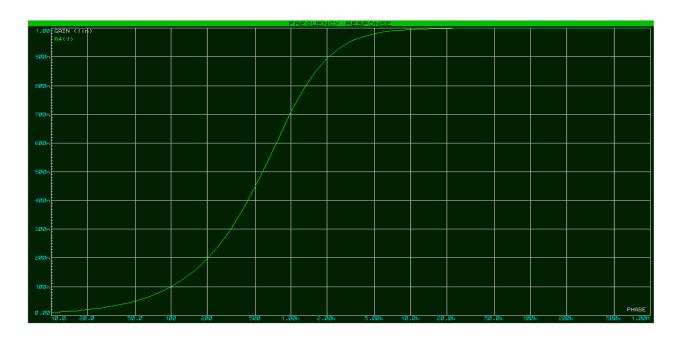

- per valori di frequenza inferiori alla frequenza di taglio (f < 10 [kHz]), le componenti del segnale d'ingresso sono molto attenuate, a tal punto che l'attenuazione tende ad assumere valori molto grandi in valore assoluto (ciò corrisponde, in scala lineare, a un guadagno tendente a zero);
- in prossimità della frequenza di taglio (f → 10 [kHz]), il guadagno inizia a crescere significativamente (attenuazione di +3[dB] sul guadagno in banda passante);
- per valori di frequenza superiori alla frequenza di taglio (f > 10 [kHz]),l'attenuazione assume valore tende a zero (0[dB]→ 1).

Osservando l'andamento del guadagno decade per decade, partendo dalla frequenza di taglio **ft** e proseguendo per valori sempre maggiori,

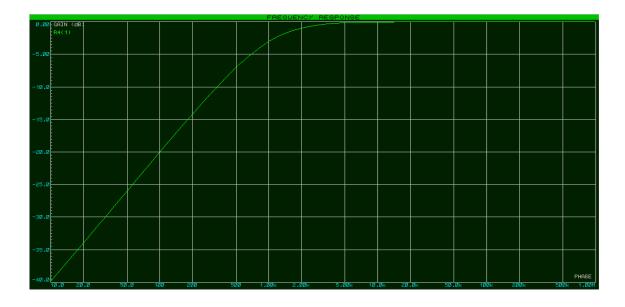
$$|G(j\omega)|_{dB} = +20[dB]$$
 (prima decade dopo ft)
 $|G(j\omega)|_{dB} = +40[dB]$ (seconda decade dopo ft)

si nota che (osservando anche il grafico) l'attenuazione diminuisce in modo lineare di 20 [dB]/decade (oppure di 6[dB]/ottava). Ciò basta per affermare che il filtro in questione è un filtro passa-alto del l'ordine.

Diagramma della fase



Esaminando questo grafico, si osserva che:


- per valori di frequenza inferiori alla frequenza di taglio (f < 3 [kHz]), la fase tende a assumere il valore +90°. Per, osservando bene il grafico, la fase presenta un massimo in poco meno di +90° il che, da un punto di vista teorico, non è possibile. Si ipotizza che tale "errore" sia causato dal livello di precisione del software;
- in prossimità della frequenza di taglio (f → 3 [kHz]) è situato l'inizio del "declivio" della fase
 (alla frequenza di taglio si registra un valore di fase pari +45°);
- per valori di frequenza superiori alla frequenza di taglio (f > 3 [kHz]), la fase assume un andamento asintotico sul semiasse positivo delle frequenze.
- Per variare la frequenza di taglio (ad esempio a 1 [kHz]), cambio il valore di resistenza del resistore. Essendo la nuova frequenza di taglio un decimo della precedente, sceglierò un valore di resistenza dieci volte più grande (R = 16 [kΩ]).

Col nuovo valore di resistenza, i diagrammi si presentano così (le considerazioni fattibili sono analoghe a quelle avanzate per il caso precedente; cambia solamente il valore della frequenza di taglio e tutto ciò che ne deriva):

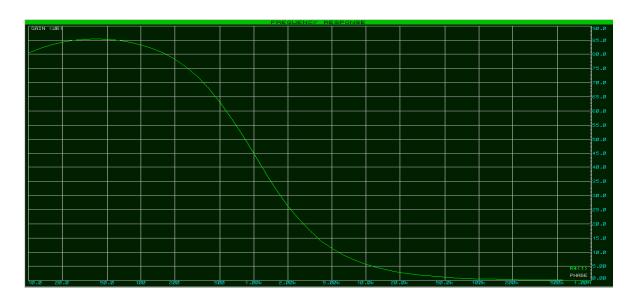

Diagramma in scala lineare

Diagramma in scala semilogaritmica

Diagramma della fase

Riassumendo le considerazioni avanzate considerando il comportamento del filtro in funzione della frequenza (in entrambi i casi, andando a variare anche il valore della frequenza di taglio e in particolare riguardo al modulo della FdT), si può affermare che il filtro in esame è un **passa-alto**, poiché attenua maggiormente le componenti del segnale d'ingresso aventi valori di frequenza minori della frequenza di taglio.