RAPPRESENTAZIONE DI UN SEGNALE SINUSOIDALE con valore medio Vm

Espressione matematica:

♦
$$v(t) = V_m + V_{Max} * sen(2\pi/T * t)$$
 [v] oppure

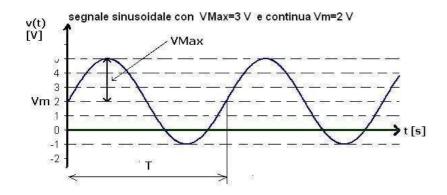
♦
$$v(t) = Vm + V_{Max}^* sen(2\pi * t)$$
 " oppure

$$\bullet$$
 v(t) = V_m + V_{Max}* sen (ω * t)

t variabile indipendente (tempo)

v(t) variabile dipendente (tensione **v** oppure corrente **i**)

 V_{Max} = valore massimo


T = periodo

 V_m = valore medio (componente continua del segnale)

T = periodo è misurato in secondi [s] da cui

frequenza **f =1/T** in Hertz [Hz] (n°cicli al secondo)

pulsazione $\omega = 2\pi/T = 2\pi^* f$ in radianti / secondi [rad/s]

nota: sulla macchinetta calcolatrice ci sono deg rad grad **deg** è la notazione in gradi dove 360° sono un giro della circonferenza (un ciclo)

rad è in radianti dove 2π radianti (6,28 radianti cioè il numero di volte che il raggio sta nella sua circonferenza) sono un giro della circonferenza (un ciclo)

grad è la notazione in gradi centesimali dove 400° sono un giro della circonferenza (un ciclo)

DATI:

$$V_{Max} = 3 [V]$$

$$T = 2$$
 [ms] cioè $2*10^{-3}$ [s] $Vm = 2$ [V]

da cui:

frequenza f = 1/T = 0.5 [KHz] (cicli al secondo) pulsazione w = 3142 [rad/s]

espressione matematica del segnale :

$$v(t) = 2 + 3 \text{ sen } (2\pi/2*10^{-3}* \text{ t}) \text{ [V]}$$

oppure $v(t) = 2 + 3 \text{ sen } (2\pi*500* \text{ t})$ "oppure $v(t) = 2 + 3 \text{ sen } (3142* \text{ t})$ "

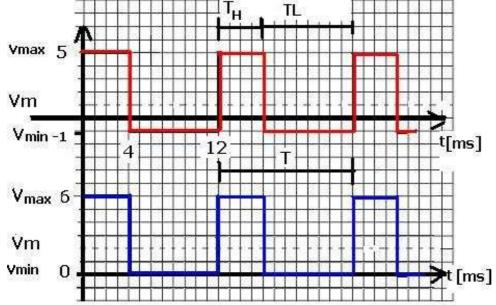
Valore efficace di un segnale sinusoidale (con Vmedio = 0)

$$V_{eff} = V_{Max} / \sqrt{2}$$
 ed $Ieff = I_{Max} / \sqrt{2}$ da cui

$$P_{media} = V_{eff} * I_{eff} = (V_{Max} / \sqrt{2}) * (I_{Max} / \sqrt{2}) =$$

$$= (V_{\text{Max}} * I_{\text{Max}}) / 2 \quad [Watt]$$

 $dalla\ legge\ di\ ohm\ \ per\ un\ segnale\ sinusoidale: \ \ Pmedia = (\ V_{Max}\ *\ I_{Max}\)\ /\ 2\ = V_{Max}^{\ 2}\ /2R = R\ *I_{Max}^{\ 2}\ /\ 2$


(solo su carichi resistivi, con tensione e corrente in fase)

RAPPRESENTAZIONE DI UNA ONDA QUADRA avente valore medio Vm

Come dalle figure si deve dare : periodo T, $\delta = T_H / T$ (duty cycle) oppure $\delta\% = (T_H / T)*100$ **Vmax** picco superiore , **Vmin** picco inferiore, **Vpicco picco Vpp** = Vmax - Vmin

il valore medio medio si ottiene con $Vm = (Vmax * T_H + Vmin* T_L) / T$

nel caso di segnale unipolare con Vmin = 0 allora Vmax = Vpp e $Vm = Vpp * T_H / T = Vpp * \delta$

Calcolo valore medio

Esempio 1 : segnale bipolare Dati :

$$Vmax = 5 V$$
 $Vmin = -1 V$
 $T=12 ms$ $T_H/T = 0.33$

Da cui
$$T_L = T - T_H = 12 - 4 = 8 \text{ ms}$$

 $Vm = (Vmax^*T_H + Vmin^*T_L) / T$

$$Vm = (5*4 - 1*8)/12 = 1 V$$

Esempio 2

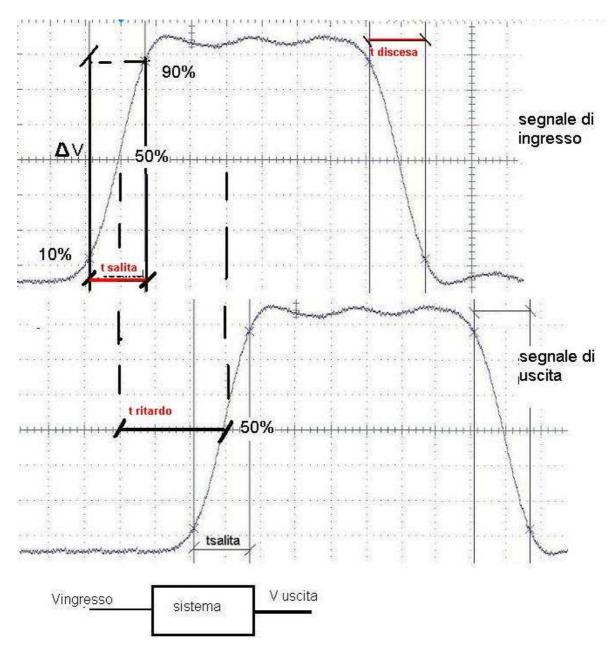
segnale unipolare con Vmin = 0

Dati:

$$Vmax = Vpp = 6$$
 V
T=12 **ms** $T_H/T = 0.33$

Da cui

$$Vm = Vpp*\delta = 6*0,33= 2 V$$


Valore efficace di un segnale onda quadra unipolare con Vmin = 0

Veff = Vpp *
$$\sqrt{\delta}$$

Esempio 2 : Veff = $6* \sqrt{0.33} = 3.45 \text{ V}$

Pmedia = Veff * Ieff = (Vpp * Ipp) * δ = Vpp² * δ / R = R*Ipp² * δ [Watt]

Tempo di salita, Tempo di ritardo e Slew Rate

TEMPI DI SALITA / DISCESA

Si consideri un segnale reale a onda quadra ; impiegherà un certo tempo per passare da uno stato all'altro. Si definisce **tempo di salita** (rising time, t_r) il tempo occorrente al segnale per passare dal 10% al 90% del valore finale (Vmax), si definisce **tempo di salita** (falling time, t_f) il tempo occorrente al segnale per passare dal 90% al 10% del valore finale (Vmin).

SLEW RATE

Si definisce Slew Rate di un segnale qualsiasi, la massima pendenza del segnale stesso ; l' espressione è $\mathbf{SR} = \Delta \mathbf{V}/\Delta \mathbf{t}$ (Volt/µs, di solito);

per un segnale quadro, come da figura $\mathbf{SR} = (90\% \, \text{Vfinale} - 10\% \, \text{Vfinale}) / \text{tempo salita}$ per un segnale sinusoidale $\mathbf{SR} = \boldsymbol{\omega} * \mathbf{Vmax}$ ($\boldsymbol{\omega}$ pulsazione, \mathbf{Vmax} ampiezza o valore di picco)

TEMPO DI RITARDO (di Propagazione)

In qualsiasi sistema c'è un ritardo tra effetto e causa che ha generato l'effetto, cioè la risposta dell'uscita è ritardata rispetto all'ingresso. Tale ritardo viene detto **tempo di ritardo** o anche di propagazione del segnale. Per un dato segnale, si calcola andando a misurare il ritardo che intercorre tra segnale di ingresso e di uscita, quando questi sono al 50% del loro valore finale. Tale ritardo è in genere diverso a seconda che si consideri la transizione sul fronte di salita (dal livello basso al livello alto, **t**_{PLH}) o sul fronte di discesa, **t**_{PHL}.